Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.5.411

Production of Carotenoids by Bacteria; Carotenoid Productivity and Availability  

Choi, Seong Seok (Basic Science Research Institute, Pukyong National University)
Kim, Gun-Do (Department of Microbiology, Pukyong National University)
Publication Information
Journal of Life Science / v.32, no.5, 2022 , pp. 411-419 More about this Journal
Abstract
Carotenoids are red, orange, and yellow fat-soluble pigments that exist in nature, and are known as physiologically active substances with various functions, such as provitamin A, antioxidant, anti-inflammatory, and anticancer. Because of their physiological activity and color availability, carotenoids are widely used in the food, cosmetics, and aquaculture industries. Currently, most carotenoids used industrially use chemical synthesis because of their low production cost, but natural carotenoids are in the spotlight because of their safety and physiologically active effects. However, the production of carotenoids in plants and animals is limited for economic reasons. Carotenoids produced by bacteria have a good advantage in replacing carotenoids produced by chemical synthesis. Since carotenoids produced from bacteria have limited industrial applications due to low productivity, studies are continuously being conducted to increase the production of carotenoids by bacteria. Studies conducted to increase carotenoid production from bacteria include the activity of enzymes in the bacterial carotenoid biosynthesis pathway, the development of mutant strains using physical and chemical mutagens, increasing carotenoid productivity in strain construction through genetic engineering, carotenoid accumulation through stress induction, fermentation medium composition, culture conditions, co-culture with other strains, etc. The aim of this article was to review studies conducted to increase the productivity of carotenoids from bacteria.
Keywords
Bacteria; carotenoid; co-culture; culture condition; genetic engineering;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kaulmann, A. and Bohn, T. 2014. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 34, 907-929.   DOI
2 Eisenreich, W., Bacher, A., Arigoni, D. and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61, 1401-1426.
3 Fassett, R. G. and Coombes, J. S. 2011. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar. Drugs 9, 447-465.   DOI
4 Fernandes, A. S., do Nascimento, T. C., Jacob-Lopes, E., De Rosso, V. V. and Zepka, L. Q. 2018. Progress in carotenoid research. pp. 1-15. BoD-Books on Demand : GmbH, Norderstedt, Germany.
5 Fraser, P. D., Miura, Y. and Misawa, N. 1997. In vitro characterization of astaxanthin biosynthetic enzymes. J. Biol. Chem. 272, 6128-6135.   DOI
6 Schaub, P., Yu, Q., Gemmecker, S., Poussin-Courmontagne, P., Mailliot, J., McEwen, A. G. Ghisla, S., AlBabili, S., Cavarelli, J. and Beyer, P. 2012. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. PLoS One 7, e39550.   DOI
7 Jeong, T. H., Cho, Y. S., Choi, S. S., Kim, G. D. and Lim, H. K. 2018. Enhanced production of astaxanthin by metabolically engineered non-mevalonate pathway in Escherichia coli. Kor. J. Microbiol. Biotechnol. 46, 114-119.   DOI
8 Joshi, C. and Singhal R. S. 2016. Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatal. Agric. Biotechnol. 8, 228-235.   DOI
9 Kharangate-Lad, A. and Bhosle, S. 2016. Studies on siderophore and pigment produced by an adhered bacterial strain Halobacillus trueperi MXM-16 from the mangrove ecosystem of Goa, India. Indian J. Microbiol. 56, 461-466.   DOI
10 Khodaiyan, K., Faramarz, F., Razavi, S. H., Emam-Djomeh, Z., Mousavi, S. M. A. and Hejazi, M. A. 2007. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. J. Microbiol. Biotechnol. 17, 195-201.
11 Zhang, Z., Pang, Z., Xu, S., Wei, T., Song, L., Wang, G., Zhang, J. and Yang, X. 2019. Improved carotenoid productivity and COD removal efficiency by co-culture of Rhodotorula glutinis and Chlorella vulgaris using starch wastewaters as raw material. Appl. Biochem. Biotechnol. 189, 193-205.   DOI
12 Tsubokura, A., Yoneda, H. and Mizuta, H. 1999. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int. J. Syst. Bacteriol. 49, 277-282.   DOI
13 Wang, G. S., Grammel, H., Abou-Aisha, K., Sagesser, R. and Ghosh, R. 2012. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 78, 7205-7215.   DOI
14 Wang, Q., Liu, D., Yang, Q. and Wang, P. 2017. Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. Ann. Microbiol. 67, 425-431.   DOI
15 Yabuzaki, J. 2017. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database 2017, bax004   DOI
16 Yang, Y., Liu, B., Du, X., Li, P., Liang, B., Cheng, X., Du, L., Huang, D., Wang, L. and Wang, S. 2015. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci. Rep. 5, 1-9.
17 Zhou, Q., Zhang, P. and Zhang, G. 2014. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity. Bioresour. Technol. 171, 330-335.   DOI
18 Seo, Y. B., Jeong, T. H., Choi, S. S., Lim, H. K. and Kim, G. D. 2017. Enhanced production of astaxanthin in Paracoccus haeundaensis strain by physical and chemical mutagenesis. J. Life Sci. 27, 339-345.   DOI
19 De Neve, J., Goswami, G., Dutta, A., Surabhi, C. and Dutta, D. 2014. A statistically motivated choice of process parameters for the improvement of canthaxanthin production by Dietzia maris NIT-D (accession number: HM151403). Rev. Mex. Ing. Quim. 13, 595-603.
20 Saejung, C. and Salasook, P. 2018. Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids. Environ. Technol. 41, 1-35.   DOI
21 Seo, Y. B., Kim, D. E., Kim, G. D., Kim, H. W., Nam, S. W., Kim, Y. T. and Lee, J. H. 2009. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59, 2769-2772.   DOI
22 Shahina, M., Hameed, A., Lin, S. Y., Hsu, Y. H., Liu, Y. C., Cheng, I. C., Lee, M. R., Lai, W. A., Lee, R. J. and Young, C. C. 2013. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int. J. Syst. Evol. Microbiol. 63, 3415-3422.   DOI
23 Simova, E. D., Frengova, G. I. and Beshkova, D. M. 2003. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-Lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate. Z. Naturforsch C. J. Biosci. 58, 225-229.   DOI
24 Stahl, W. and Sies, H. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24, 345-351.   DOI
25 Hameed, A., Shahina, M., Lin, S. Y., Lai, W. A., Hsu, Y. H., Liu, Y. C. and Young, C. C. 2014. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int. J. Syst. Evol. Microbiol. 64, 138-145.   DOI
26 Suwaleerat, T., Thanapimmetha, A., Srisaiyoot, M., Chisti, Y. and Srinophakun, P. 2018. Enhanced production of carotenoids and lipids by Rhodococcus opacus PD630. J. Chem. Technol. Biotechnol. 93, 2160-2169.   DOI
27 Taniguchi, H., Henke, N. A., Heider, S. A. and Wendisch, V. F. 2017. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab. Eng. Commun. 4, 1-11.   DOI
28 Harker, M., Hirschberg, J. and Oren, A. 1998. Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int. J. Syst. Evol. Microbiol. 48, 543-548.
29 Goodwin, T. W. 1980. Nature and distribution of carotenoids. Food Chem. 5, 3-13.   DOI
30 Guo, J. Y., Hu, K. L., Bi, C. H., Li, Q. Y. and Zhang, X. L. 2018. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 45, 697-705.   DOI
31 Huang, Z., Liu, Y., Qi, G., Brand, D. and Zheng, S. G. 2018. Role of vitamin A in the immune system. J. Clin. Med. 7, 258.   DOI
32 Ishida, B. K. and Chapman, M. H. 2009. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 57, 1051-1059.   DOI
33 Chen, D., Han, Y. and Gu, Z. 2006. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem. 41, 1773-1778.   DOI
34 Linnewiel-Hermoni, K., Khanin, M., Danilenko, M., Zango, G., Amosi, Y., Levy, J. and Sharoni, Y. 2015. The anti- cancer effects of carotenoids and other phytonutrients re- sides in their combined activity. Arch. Biochem. Biophys. 572, 28-35.   DOI
35 Lopez, G. D., Alvarez-Rivera, G., Carazzone, C., Ibanez, E., Leidy, C. and Cifuentes, A. 2021. Bacterial carote- noids: extraction, characterization, and applications. Crit. Rev. Anal. Chem. 16, 1-24.
36 Gong, M. and Bassi, A. 2016. Carotenoids from micro- algae: A review of recent developments. Biotechnol. Adv. 34, 1396-1412.   DOI
37 Asker, D., Beppu, T. and Ueda, K. 2007. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30, 291-296.   DOI
38 Asker, D., Beppu, T. and Ueda, K. 2007. Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int. J. Syst. Evol. Microbiol. 57, 837-843.   DOI
39 Bohutskyia, P., Kuceka, L. A., Hill, E., Pinchuk, G. E., Mundree, S. G. and Beliaev, A. S. 2018. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresour. Technol. 260, 68-75.   DOI
40 Chattopadhyay, M. K., Jagannadham, M. V., Vairamani, M. and Shivaji, S. 1997. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239, 85-90.   DOI
41 Olson, J. A. 1989. Provitamin A function of carotenoids: the conversion of β-carotene into vitamin A. J. Nutr. 119, 105-108.   DOI
42 Matsumoto, M., Iwama, D., Arakaki, A., Tanaka, A., Tanaka, T., Miyashita, H. and Matsunaga, T. 2011. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int. J. Syst. Evol. Microbiol. 61, 2956-2961.   DOI
43 Misawa, N. and Shimada, H. 1998. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59, 169-181.   DOI
44 Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T, and Miki, W. 1995. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bacteriol. 177, 6575-6584.   DOI
45 Paniagua-Michel, J., Olmos-Soto, J. and Ruiz, M. A. 2012. Microbial carotenoids from bacteria and microalgae. pp. 1-12. Methods and Protocols; Humana Press: New York, NY, USA
46 Phadwal, K. 2005. Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene 345, 35-43.   DOI
47 Li, C., Swofford, C. A. and Sinskey, A. J. 2020. Modular engineering for microbial production of carotenoids. Metab. Eng. Commun. 10, e00118.   DOI
48 Lee, J. H., Hwang, Y. M., Baik, K. S., Choi, K. S., Ka, J. O. and Seong, C. N. 2014. Mesoflavibacter aestuarii sp. nov., a zeaxanthin-producing marine bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 1932-1937.   DOI
49 Lee, J. H., Kim, Y. S., Choi, T. J., Lee, W. J. and Kim, Y. T. 2004. Paracoccus haeundaensis sp. nov., a Gramnegative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 1699-1702.   DOI
50 Li, C., Li, B., Zhang, N., Wei, N., Wang, Q., Wang, W., Xie, T. and Zou, H. 2019. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway. J. Gen. Appl. Microbiol. 65, 111-120.   DOI
51 Kumar, S. R., Hosokawa, M. and Miyashita, K. 2013. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs 11, 5130-5147.   DOI
52 Simova, E. D., Frengova, G. I. and Beshkova, D. M. 2004. Synthesis of carotenoids by Rhodotorula rubra GED8 cocultured with yogurt starter cultures in whey ultrafiltrate. J. Ind. Microbiol. Biotechnol. 31, 115-121.   DOI
53 Das, A., Yoon, S. H., Lee, S. H., Kim, J. Y., Oh, D. K. and Kim, S. W. 2007. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl. Microbiol. Biotechnol. 77, 505-512.   DOI
54 De Miguel, T., Sieiro, C., Poza, M. and Villa, T. G. 2000. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. 3, 107-111.
55 Buzzini, P. 2001. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol. 90, 843-847.   DOI
56 Rohdich, F., Kis, K., Bacher, A. and Eisenreich, W. 2001. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr. Opin. Chem. Biol. 5, 535-540.   DOI
57 Takemura, M., Takagi, C., Aikawa, M., Araki, K., Choi, S. K., Itaya, M., Shindo, K. and Misawa, N. 2021. Heterologous production of novel and rare C30-carotenoids using Planococcus carotenoid biosynthesis genes. Microb. Cell Fact. 20, 1-12.   DOI
58 Domonkos, I., Kis, M., Gombos, Z. and Ughy, B. 2013. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 52, 539-561.   DOI
59 Choi, S. S., Seo, Y. B., Nam, S. W. and Kim, G. D. 2021. Enhanced production of astaxanthin by co-culture of Paracoccus haeundaensis and lactic acid bacteria. Front. Mar. Sci. 7, 597553.   DOI
60 Sasidharan, P., Raja, R., Karthik, C., Ranandkumar, S. and Indra Arulselvi, P. 2013. Isolation and characterization of yellow pigment producing Exiguobacterium Sps. J. Bio- chem. Technol. 4, 632-635.
61 Netzer, R., Stafsnes, M. H., Andreassen, T., Goksoyr, A., Bruheim, P. and Brautaset, T. 2010. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J. Bacteriol. 192, 5688-5699.   DOI
62 Li, F., Murillo, C. and Wurtzel, E. T. 2007. Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol. 144, 1181-1189.   DOI
63 Kovacs, G., Burghardt, J., Pradella, S., Schumann, P., Stackebrandt, E. and Marialigeti, K. 1999. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int. J. Syst. Evol. Microbiol. 49, 167-173.   DOI