• 제목/요약/키워드: Anti-Plane Shear

검색결과 39건 처리시간 0.018초

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

면외 충격하중을 받는 3층 압전 복합재료내의 가장자리 균열거동 (Edge Crack Behavior in a Three Layered Piezoelectric Composite Under Anti-Plane Impact Loads)

  • 권순만;손명섭;이강용
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2172-2179
    • /
    • 2002
  • In this paper, we examine the dynamic electromechanical behavior of an edge crack in a piezoelectric ceramic layer bonded between two elastic layers under the combined anti-plane mechanical shear and in-plane electric transient loadings. We adopted both the permeable and impermeable crack boundary conditions. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

두 이방성 띠판에 내재된 면외변형하의 등속평행 균열 (Parallel Crack with Constant Velocity in Two Bonded Anisotropic Strip Under Anti-Plane Deformation)

  • 박재완;김남훈;최성렬
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.496-505
    • /
    • 2000
  • A semi-infinite parallel crack propagated with constant velocity in two bonded anisotropic strip under anti-plane clamped displacement is analyzed. Using Fourier integral transform a Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are determined, where the results give the more general expression applicable to the extent of the anisotropic material having one plane of elastic symmetry for the parallel crack. The dynamic stress intensity factor and energy release rate are also obtained as a closed form, which are the results applicable to the problem both of dynamic and static crack under the same geometry as this study. The stress intensity factor approaches zero at the critical crack velocity which is less than the shear wave velocity, but in typical case of isotropic or orthotropic material agrees with the velocity of shear wave. Also a circular shear stress around crack tip is considered, from which the stress is shown to be approximately symmetric about the horizontal axis. Referring to the maximum stress criteria, it could be shown that a brenched crack is formed by crack growth as crack velocity increases.

Crack Problem at Interface of Piezoelectric Strip Bonded to Elastic Layer Under Anti-Plane Shear

  • Lee, Kang-Yong;Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.61-65
    • /
    • 2001
  • Using the theory of linear piezoelectricity, the problem of two layered strip with a piezoelectric ceramic bonded to an elastic material containing a finite interface crack is considered. The out-of-plane mechanical and in-plane electrical loadings are simultaneously applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The stress intensity factor is determined, and numerical analyses for several materials are performed and discussed.

  • PDF

The nonlocal theory solution for two collinear cracks in functionally graded materials subjected to the harmonic elastic anti-plane shear waves

  • Zhou, Zhen-Gong;Wang, Biao
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.63-74
    • /
    • 2006
  • In this paper, the scattering of harmonic elastic anti-plane shear waves by two collinear cracks in functionally graded materials is investigated by means of nonlocal theory. The traditional concepts of the non-local theory are extended to solve the fracture problem of functionally graded materials. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. To make the analysis tractable, it is assumed that the shear modulus and the material density vary exponentially with coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips.

Dynamic Response of an Anti-plane Shear Crack in a Functionally Graded Piezoelectric Strip

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.419-431
    • /
    • 2004
  • The dynamic response of a cracked functionally graded piezoelectric material (FGPM) under transient anti-plane shear mechanical and in-plane electrical loads is investigated in the present paper. It is assumed that the electroelastic material properties of the FGPM vary smoothly in the form of an exponential function along the thickness of the strip. The analysis is conducted on the basis of the unified (or natural) crack boundary condition which is related to the ellipsoidal crack parameters. By using the Laplace and Fourier transforms, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, the electric field, FGPM gradation, crack length, and electromechanical coupling coefficient.

균일한 면외 전단하중을 받는 직교 이방성 적층재 내부 중앙균열의 모드 III 응력세기계수 (Mode III Stress Intensity Factors for Orthotropic Layered Material with Internal Center Crack Under Uniform Anti-Plane Shear Loading)

  • 이강용;주성철;김성호
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.961-967
    • /
    • 1999
  • A model is constructed to evaluate the mode III stress intensity factor(SIF) for orthotropic three-layered material with a center crack subjected to uniform anti-plane shear loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is numerically analyzed to evaluate the effects of the ratio of shear modulus, strength of each layer and crack length to layer thickness on the stress intensity factor.

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

반평면 전단하중력하에서 곡면형상 접합면을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구 (The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force)

  • 박상현;전흥재
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.67-74
    • /
    • 2000
  • 계면크랙으로부터 먼 거리에 일정한 반평면(anti-plane) 전단력이 가해지는 경우에 대해서 복소변수 변위함수(complex variable displacement function)를 이용하여 곡면형상의 접합면을 가지는 폼과 복합재료의 접합재료에 대한 일반해를 고찰하였다. 점탄성 모델을 표현하기 위하여 Kelvin-Maxwell 모델을 제시하였으며, 폼의 점탄성을 나타내는 수학적 모델을 라플라스 변환을 이용하여 처리하였다. 폼의 점탄성 및 복합재료의 이방성을 고려하여 계면크랙에서의 응력세기계수를 예측하였다. 응력세기계수는 접합면의 곡률이 증가할수록 증가하는 경향을 보이며 시간이 지남에 따라 증가하다 일정값에 수렴하였다. 또한 폼과 복합재료 사이의 전단 강성계수비가 증가할수록 응력세기계수가 증가하였으며, 복합재료의 섬유방향이 응력세기계수의 변화에 미치는 영향은 점차 감소하였다.

  • PDF

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.