• Title/Summary/Keyword: Anti-Obesity Activity

Search Result 364, Processing Time 0.024 seconds

Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans (3T3-L1 지방전구세포에서 홍국균 균사체-고체발효 원두커피 추출물의 지방축적 억제효과)

  • Lim, Yongrae;Shin, Ji-Young;Kim, Hoon;Baek, Gil-Hun;Yu, Kwang-Won;Jeong, Heon-Sang;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.624-629
    • /
    • 2014
  • Obesity is the leading metabolic disease in industrialized countries and is closely associated with coronary heart disease, hypertension, diabetes, and cancer. The objective of this study was to evaluate the anti-adipogenic effects of two roasted coffee beans, Vietnam robusta (VR) and Ethiopia Mocha Sidamo G2 (ES), as well as fermented coffee beans with Monascus ruber (MR) mycelium on differentiation of 3T3-L1 preadipocytes. Treatments with 1,000 ${\mu}g/mL$ of hot water extract from coffee beans significantly reduced intracellular lipid accumulation. In addition, VR more effectively inhibited transcription factors such as $PPAR{\gamma}$, $C/EBP{\alpha}$, FAS, and aP2 compared to ES. Further, ES fermented with MR showed more effective anti-adipogenic activity than non-fermented ES. These results suggest that VR and ES inhibit adipocyte differentiation which may contribute to their anti-adipogenic properties.

Identification of Anti-obesity Constituents from Yukeuigambitang (육의감비탕(肉薏減肥湯)의 항비만 효능 및 유효성분 규명)

  • Wang, Shian;Song, Hyo-Nam;Choi, Won-Ik;Park, Jong-Hyuk;Jeong, Youg-Joon;Kang, Se-Chan;Ko, Sung-Kwon;Bhang, Dae-Hyuk
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.271-276
    • /
    • 2012
  • To develop antiobese food materials from medicinal plants, isolation of antiobese active compounds in $Yukeuigambitang$ of which activity was already proved in the previous study by animal experiments was performed. Antiobese effect of stepwise solvent fractions from 70% ethanol extract of $Yukeuigambitang$ was determined by the differentiation inhibition activity on 3T3-L1 preadipocytes. CH2Cl2 fraction had significant antiobese activity, and n-Hexane and EtOAc fractions were the next. Three phenolic compounds from $CH_2Cl_2$ fraction were identified by GC/MS analysis and one compound was finally isolated by HPLC. It was revealed as a new compound presumed to be one of the derivatives produced from the medicinal plants mixture in $Yukeuigambitang$.

Leaves of Cudrania tricuspidata on the Shoot Positional Sequence Show Different Inhibition of Adipogenesis Activity in 3T3-L1 Cells (꾸지뽕 신초 엽위별 잎 추출물의 항비만 효과)

  • Park, Ju Ha;Guo, Lu;Kang, He Mi;Son, Beung Gu;Kang, Jum Soon;Lee, Yong Jae;Park, Young Hoon;Je, Byoung Il;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • This study aimed to evaluate the anti-obesity effects of Cudrania tricuspidata leaf extract in the order of leaf development on the shoot (L0, L1, L2, L3, L4, and L5). The leaves at the apex of a Cudrania tricuspidata shoot were classified as L0; the next leaves of the apex were classified as L1, L2, L3, and L4 from highest to lowest; and the lowest leaf was classified as L5. A series of 70% ethyl alcohol leaf extracts were screened for the inhibitory effects of adipogenesis in 3T3-L1 preadipocytes. We found that the apical leaf extract of Cudrania tricuspidata (CTL0) was the most effective. Next, a study was conducted on the inhibitory action mechanism of CTL0. Treatment with CTL0 significantly suppressed the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by the decrease in lipid droplet content observed with Oil Red O staining. Treatment with 12.5 ㎍/ml, 25 ㎍/ml, and 50 ㎍/ml of CTL0 significantly reduced the lipid droplet content. Glucose and cellular triglyceride concentrations were reduced in the 3T3-L1 cells on the CTL0-treated medium compared to the differentiation medium (DM control, DMEM + insulin + dexamethasone + rosiglitazone). Compared with DM, CTL0 significantly inhibited the expression of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ), LPL, A-FABP, and Glut4. These findings show that CTL0 extract has potent anti-obesity effects.

Comparison of Diglyceride, Conjugated Linoleic Acid, and Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Preadipocytes

  • Jeong, Jae-Hwang;Lee, Sang-Hwa;Hue, Jin-Joo;Lee, Yea-Eun;Lee, Young-Ho;Hong, Soon-Ki;Jeong, Seong-Woon;Nam, Sang-Yoon;Yun, Young-Won;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.145-150
    • /
    • 2007
  • Conjugated linoleic acid (CLA) reduces fat deposition in several mammalian species. The proposed mechanisms for this effect are reduced preadipocyte proliferation and differentiation. The objective of this study was to investigate the inhibitory effects of diglyceride (DG), CLA, DG-CLA of proliferation and differentiation of 3T3-L1 preadipocytes. Cell viability was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was measured by Oil red O staining. The proliferation of preconfluent 3T3-L1 cells by treatments of DG, CLA, and DG-CLA was reduced in a dose-dependent manner. CLA among them was the most effective in reduction of viable cells with increasing concentrations. Treatments of the DG, CLA, and DG-CLA at the concentration of $100{\cdot}\ddot{I}g/ml$ for 48h significantly inhibited differentiation of 3T3-L1 cells (p<0.05). In addition. cytoplasmic lipid accumulation during differentiation of the 3T3-L1 preadipocytes was also inhibited by treatments of the test solutions. DG-CLA was the most effective in the inhibition of differentiation and lipid accumulation in 3T3-L1 cells. These results indicate that the DG including CLA as fatty acids is more effective for anti-obesity than DG or CLA alone and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

A Comparative Study on the Physiological Activities of Auricularia spp. (목이버섯 품종간 생리활성 비교 연구)

  • Jo, Se-Hyun;Kim, Tae-Ho;Yu, Young-Bok;Oh, Jin-A;Jang, Mi-Hyang;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.350-355
    • /
    • 2012
  • This study investigated the physiological effects of three species of Auricularia known as Auricularia polytricha (JNM21001), Auricularia auricula-judae black (JNM21002), and Auricularia auricula-judae brown (JNM21012). In the ORAC assay, Auricularia spp. showed antioxidant activities in the order of JNM21001>JNM21012>JNM21002. All Auricularia spp. strongly inhibited the action of ${\alpha}$-amyloglucosidase up to 60%. In order to further test in vivo anti-obesity effects, high fat diet induced ICR obese mice fed a diet containing 20% fat were used. All Auricularia spp. supplementation during high fat diet feeding significantly reduced body weight gain, epididymal fat pads weight, and lowered the food efficiency ratio compared to the high fat control (HFC) group. In particular, the group fed with JNM21012 had a lower average daily body weight gain of 0.45 g/day, demonstrating similar levels to the normal diet fed group. The group fed with JNM21012 significantly reduced lowered serum triglycerides (42%), total cholesterol (81%), and LDL-cholesterol level (66%) compared with the HFC group.

Water Extract of Fermented New Korean Medicinal Mixture (F-MAPC) Controls Intracellula Adipogenesis and Glut-4 dependent Glucose Uptake in 3T3-L1 Adipocytes and L6 Myoblasts (세포 내 지방생성과 Glut-4 의존성 포도당 운반에 미치는 발효복합한약 물추출물(F-MAPC)의 영향)

  • Jeon, Seo Young;Park, Ji Young;Kim, Sung Ok;Lee, Eun Sil;Koo, Jin Suk;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the effects water extract of fermented new korean medicinal mixture, combinations of Mori Folium, Adenophorae Radix, Phllostachyos Folium and Citri Pericarpium (F-MAPC), on adipocyte differentiation, adipogenesis and glucose uptake using undiffernentiated 3T3-L1 adipocytes and L6 myoblasts. Methods : Each herb and those mixture were respectively fermented and then extracted with water. We carried on MTT assay for check-up on cell toxicity, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ and Glut-4 protein expressions were performed. Results : F-MAPC showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 preadipocytes without affecting cell toxicity as assessed by measuring fat accumulation, and this effect was 2 fold higher in 0.2 mg/ml F-MAPC than that of the same dose of each fermented herbal extract alone. In addition, these effects were associated with modulation of adipogenic transcription factors, such as $C/EBP{\alpha}$, $PPAR{\gamma}$, as well as stimulated phosphorylations of AMPK and ACC. Translocation of Glut-4 was significantly increased by 10.2% in L6 cells treated with 0.2 mg/ml F-MAPC compared with that of control. Conclusions : These results demonstrate that F-MAPC may be an ideal candidate for therapy of obesity and diabetes by disturbing the differentiation into adipocytes, as well as the inducement of intramuscular glucose uptake from blood.

Pear pomace ethanol extract improves insulin resistance through enhancement of insulin signaling pathway without lipid accumulation

  • You, Mi-Kyoung;Kim, Hwa-Jin;Rhyu, Jin;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of ${\alpha}-glucosidase$ has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, ($Tyr^{632})$)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 ($Tyr^{632})/IRS$, whereas, down-regulated p-IRS-1 ($Ser^{307})/IRS$. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.

Induction of ER Stress-Mediated Apoptosis by ${\alpha}$-Lipoic Acid in A549 Cell Lines

  • Kim, Jong-In;Cho, Sung-Rae;Lee, Chang-Min;Park, Eok-Sung;Kim, Ki-Nyun;Kim, Hyung-Chul;Lee, Hae-Young
    • Journal of Chest Surgery
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Background: ${\alpha}$-Lipoic acid (${\alpha}$-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of ${\alpha}$-LA in a lung cancer cell line, A549. Materials and Methods: ${\alpha}$-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription.polymerase chain reaction analyses. Results: ${\alpha}$-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. ${\alpha}$-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by ${\alpha}$-LA, and the antioxidant N-acetyl-L-cysteine decreased the ${\alpha}$-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion: ${\alpha}$-LA induced ER stress-mediated apoptosis in A549 cells via ROS. ${\alpha}$-LA may therefore be clinically useful for treating lung cancer.

Improvement of Insulin Resistance by Curcumin in High Fat Diet Fed Mice (고지방식이 급여 마우스에서 curcumin의 인슐린 저항성 개선 효능)

  • Kim, Dan Bi;Ahn, Eunyeong;Kim, Eunjung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.315-323
    • /
    • 2018
  • Rapid increase of diabetic population is a major health concern in Korea. In a trial to develop food components which can prevent and/or cure diabetes, we investigated the anti-diabetic activity of curcumin in high fat diet (HFD)-induced type 2 diabetes mellitus (T2DM) animal model. C57BL/6 mice were divided into three groups: normal diet (ND), high fat diet (HFD), and curcumin (CUR, HFD+0.02% curcumin). Mice were fed each diet for 16 weeks. CUR significantly reduced body weight gain, the levels of plasma glucose, insulin, total-cholesterol (T-C), and LDL-C, whereas increased HDL-C compared to those of HFD group. Notably, insulin signaling pathway was activated by CUR. This suggests that CUR improves obesity-associated T2DM by overcoming insulin resistance in part.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.