• Title/Summary/Keyword: Anti-Diabetic Activity

Search Result 281, Processing Time 0.023 seconds

Evaluation of Antioxidant and Anti-diabetic Effects of Sappan Lignum by Extraction Method (추출방법에 따른 소목 심재의 항산화 및 항당뇨 활성 평가)

  • Hong, Young Ju;Jeong, Gyeong Han;Jeong, Yun Hee;Kim, Tae Hoon
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • Objectives : The heartwood of Sappan Lignum has been used since ancient times as an ingredient in folk medicines against anti-bacterial and anti-anemia purposes. Many bioactive constituents have been derived from this biomass such as chalcones and homoisoflavonoids. In the current investigation, the antioxidant and anti-diabetic properties using DPPH and $ABTS^+$ radicals scavenging, ${\alpha}-glucosidase$, and advanced glycation end products (AGEs) inhibition assays were evaluated by different extraction methods of Sappan Lignum. Methods : In our continuing investigation for bioactive natural ingredients, the antioxidant and ${\alpha}-glucosidase$ inhibitory properties of Sappan Lignum extracts were prepared from different extraction methods and the biological efficacies were investigated in vitro. The antioxidant properties were evaluated employing radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the anti-diabetic effects of Sappan Lignum extracts were tested via ${\alpha}-glucosidase$ and AGEs formation inhibitory assay. The total phenolic contents were determined using a spectrophotometric method. Results : All the tested samples showed dose-dependent radical scavenging and ${\alpha}-glucosidase$ inhibitory activities. Among the tested extracts, the 80% methanolic extract of Sappan Lignum was showed the most potent activity with an $IC_{50}$ value of $82.3{\pm}1.7{\mu}g/m{\ell}$ against DPPH radical scavenging assay. While, $ABTS^+$ radical scavenging activity of 80% methanolic extract was higher than those of other extracts. Also, ${\alpha}-glucosidase$ inhibitory and AGEs formation effects of each extacts and total phenolic contents were evaluated. Conclusions : These results suggested that Sappan Lignum can be considered as a new effective source of natural antioxidant and anti-diabetic materials.

Anti-Oxidant Effects of Highly Bioavailable Curcumin Powder in High-Fat Diet Fed- and Streptozotocin-Induced Type 2 Diabetic Rats

  • Paik, Jean Kyung;Yeo, Hee Kyung;Yun, Jee Hye;Park, Hyun-Ji;Jang, Se-Eun
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.133-137
    • /
    • 2019
  • Curcumin is a hydrophobic polyphenol extracted from turmeric that exhibits a variety of biological functions has albeit with limited efficacy as a functional food material owing to its low absorption when administered orally. The newly developed curcumin powder formulation exhibits improved absorption rate in vivo. This study evaluates the anti-oxidant effects of $Theracurmin^{(R)}$ (TC), which is highly bio-available in curcumin powder. The antioxidant activity of TC was investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferrous reducing antioxidant power (FRAP) assays, NO radical, superoxide radical, $H_2O_2$ scavenging activity, and total antioxidant capacity (TAC). Additionally, we evaluated the antioxidant activity of TC in high-fat diet (HFD)-fed streptozotocin (STZ)-induced Type 2 diabetic rats. As a result of oral administration of TC for 13 weeks in type 2 diabetic rats, the group administration of 2,000 mg/kg significantly increased FRAP, superoxide dismutase (SOD), and reduced the level of glutathione (GSH) in liver tissue 1.9, 1.2, and 1.2-times, respectively. Furthermore, serum TAC levels increased by 1.3-fold after the rats were administered with a dose of 500 mg/kg. These results were consistent with the in vitro assay results. In conclusion, TC exhibited its potential as a functional food material through its antioxidant properties.

Phytochemistry and Pharmacology of Moringa oleifera Lam

  • Paikra, Birendra Kumar;Dhongade, Hemant kumar J.;Gidwani, Bina
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.194-200
    • /
    • 2017
  • Moringa oleifera Lam. or munga is one of the most important plant widely cultivated in India. It belongs to family Moringaceae. This plant is widely used as nutritional herb and contains valuable pharmacological action like anti-asthmatic, anti-diabetic, hepatoprotective, anti-inflammatory, anti-fertility, anti-cancer, anti-microbial, anti-oxidant, cardiovascular, anti-ulcer, CNS activity, anti-allergic, wound healing, analgesic, and antipyretic activity, Moringa oleifera Lam. The plant is also known as Horse - radish tree, Drumstick tree. Every part of this plant contains a valuable medicinal feature. It contain rich source of the vitamin A, vitamin C and milk protein. Different types of active phytoconstituents like alkaloids, protein, quinine, saponins, flavonoids, tannin, steroids, glycosides, fixed oil and fats are present. This plant is also found in the tropical regions. Some other constituents are niazinin A, niazinin B and niazimicin A, niaziminin B. The present review discusses the phytochemical composition, medicinal uses & pharmacological activity of this plant.

Physiological Characteristics and Anti-Diabetic Effect of Pediococcus pentosaceus KI62

  • Kim, Seulki;Hong, Sang-pil;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.274-287
    • /
    • 2021
  • The purpose of this study is to examine the physiological characteristics and anti-diabetic effects of Pediococcus pentosaceus KI62. The α-amylase and α-glucosidase inhibitory activity of P. pentosaceus KI62 was 94.86±3.30% and 98.59±0.52%, respectively. In MRS broth containing 3% maltodextrin inoculated by P. pentosaceus KI62, the amounts of short chain fatty acids (SCFA) were propionic acid 18.05±1.85 mg/kg, acetic acid 1.12±0.07 g/100 mL, and butyric acid 2.19±0.061 g/kg, and those of medium chain fatty acids (MCFA) were C8 0.262±0.031 mg/kg, C10 0.279±0.021 mg/kg, and C12 0.203±0.009 mg/kg. Compared to sixteen antibiotics, P. pentosaceus KI62 had the highest sensitivity to penicillin-G and rifampicin, as well as the highest resistance to vancomycin and ampicillin. The strain also showed higher leucine arylamidase and valine arylamidase activities than other enzyme activities, but it did not produce β-glucuronidase which is carcinogenic enzymes. The survival rate of P. pentosaceus KI62 in 0.3% bile was 91.67%. Moreover, the strain showed a 98.63% survival rate in pH 2.0. P. pentosaceus KI62 exhibits resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus at rates of 29.41%, 38.10%, 51.72%, and 50.47%, respectively. P. pentosaceus (23.31%) showed a similar adhesion ability to L. rhamnosus GG, the positive control (24.49%). These results show that P. pentosaceus KI62 has possibility as a probiotic with anti-diabetic effects.

Effect of Kangdangboeumbang on the Anti-diabetic Activity in NOD Mice (강당보음방이 자가면역 당뇨모델인 NOD mice의 혈당강하에 미치는 영향)

  • Song Ho Cheol;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1628-1634
    • /
    • 2004
  • This study was aimed to verify the anti-diabetic activity of Kangdangboeumbang(KBB) in NOD mice which is Insulin Dependent Diabetes Mellitus(IDDM). The reduction of blood glucose after oral administration between 14 weeks by 2 weeks period to a NOD mice in KBB extract treatment group was showed from 7 day after comparing with control group. KBB extract treatment group increasd insulin secretion amount of serum than control group and decreased IFN­γ production. The pancreatic β-cells is destroyed by Th1-dependent autoimmune disease in NOD mice. KBB extract treatment group intercepted the progress of edematous islet controlling inflammatory mononuclear cells of infiltration that also destruction of pancreatic β-cells electively in a NOD mice.

A Vinegar-processed Ginseng Radix (Ginsam) Ameliorates Hyperglycemia and Dyslipidemia in C57BL/KsJ db/db Mice

  • Han, Eun-Jung;Park, Keum-Ju;Ko, Sung-Kwon;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1228-1234
    • /
    • 2008
  • Having idea to develop more effective anti-diabetic agent from ginseng root, we comprehensively assessed the anti-diabetic activity and mechanisms of ginsam in C57BL/KsJ db/db mice. The db/db mice were divided into 4 groups; diabetic control (DC), ginsam at a dose of 300 or 500 mg/kg (GS300 or GS500) and metformin at a dose of 300 mg/kg (MT300). Ginsam was orally administered for 8 weeks. GS500 reduced the blood glucose concentration and significantly decreased an insulin resistance index. In addition, GS500 reduced the plasma non-esterified fatty acid, triglyceride, and increased high density lipoprotein-cholesterol as well as decreased the hepatic cholesterol and triglyceride. More interestingly, ginsam increased the plasma adiponectin level by 17% compared to diabetic control group. Microarray, quantitative-polymerase chain reaction and enzyme activity results showed that gene and protein expressions associated with glycolysis, gluconeogenesis, and fatty acid oxidation were changed to the way of reducing hepatic glucose production, insulin resistance and enhancing fatty acid $\beta$-oxidation. Ginsam also increased the phosphorylation of AMP-activated protein kinase and glucose transporter expressions in the liver and skeletal muscle, respectively. These changes in gene expression were considered to be the mechanism by which the ginsam exerted the anti-diabetic and anti-dyslipidemic activities in C57BL/KsJ db/db mice.

Evaluation of antioxidant, α-glucosidase inhibition and acetylcholinesterase inhibition activities of Allium hookeri root grown in Korea and Myanmar (국내 및 미얀마에서 재배된 삼채뿌리의 항산화, α-Glucosidase 저해 및 Acetylcholinesterase 저해 활성)

  • Park, Joo Young;Yoon, Kyung Young
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.239-245
    • /
    • 2016
  • This study was conducted to compare the functionality (antioxidant, anti-diabetic, and anti-dementia activities) of the methanol extract of Allium hookeri root grown in Korea (KR) and Myanmar (MR). The total polyphenol and flavonoid contents of KR and MR were 5.27 and 4.80 mg GAE/g, and 0.35 and 0.24 mg QE/g, respectively. KR contained significantly higher levels of total polyphenols and total flavonoids than those of MR (p<0.05). The IC50 values of KR and MR were 6.53 and 5.31 mg/mL, respectively, for DPPH radical scavenging activity. However, KR had a significantly higher ABTS radical scavenging activity, $Fe^{2+}$ chelating ability, and reducing power compared with those of MR (p<0.05). In the evaluation of anti-diabetic activity, KR showed significantly higher ${\alpha}-glucosidase$ inhibition activity than acarbose and MR at whole concentrations (p<0.05). KR and MR had acetylcholinesterase inhibition activities that of 51.44% and 44.33%, respectively, at a 50 mg/mL concentration. These results suggested that roots of A. hookeri, especially KR, could be useful in improving diabetic and dementia disorders due to their high antioxidant, anti-diabetic, and anti-dementia activities.

Immunoaugmenting Activity of Acemannan, the Polysaccharides Isolated from Aloe vera Gel (알로에 다당체 Acemannan의 면역증강 효능)

  • Im, Sun-A;Park, Chan-Su;Lee, Chong-Kil
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Aloe vera L.(Aloe barbadensis Miller) has been used for many centuries for various medical, cosmetic and neutraceutical purposes. The gel of A. vera was reported to exert numerous biological activities including wound healing, immunomodulatory, anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, anti-diabetic, and anti-psoriasis activities. Acemannan, found predominantly in the inner leaf gel of A. vera, has been identified as the main active ingredient exerting diverse biological activities. In this review, we summarized the recent findings on the immunomodulatory activities of acemannan. Studies that used purified acemannan demonstrate that acemannan exerts immune-stimulating, anti-cancer, anti-viral, and hematopoiesis-increasing activities. In addition, it is being clear that most of these activities of acemannan are mediated primarily by activating professional antigen presenting cells such as macrophages and dendritic cells.

Effects of $\beta$-Carotene Supplementation on Lipid Peroxide Levels and Antioxidative Enzyme Activities in Diabetic Rats ($\beta$-Carotene 첨가식이가 당뇨쥐의 지질과산화물 수준과 항산화효소 활성에 미치는 영향)

  • 이완희;천종희
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.675-683
    • /
    • 2003
  • This study investigated the effect of dietary $\beta$-carotene supplementation on lipid peroxidation and anti oxidative enzyme activity as indices of oxidative stress in diabetic rats. Fifty Sprague-Dawley male rats aging 7 weeks were used as experimental animals, which were divided into the non-diabetic control group and the diabetic group. The diabetic group received an intraperitoneal injection with streptozotocin to induce diabetes. Then the diabetic rats were divided into four dietary groups which contained different amounts of $\beta$-carotene; 0%, 0.002%, 0.02%, or 0.2% of the diet. The diabetic rats were fed the experimental diets and the non-diabetic rats were fed the basal diet without $\beta$-carotene supplementation for 2 weeks and then sacrificed. The diabetic group had a significantly higher blood glucose level than the non-diabetic group. However, blood glucose level were not significantly changed by the level of dietary $\beta$-carotene supplementation. Compared to the non-diabetic control group, the diabetic control group indicated a significant increase of plasma thiobarbituric acid reactive substance (TBARS). Liver TBARS level also tended to be higher in diabetic control group, although it was not significant. The $\beta$-carotene supplementation did not reduce plasma TBARS level. However, Liver TBARS level was significantly decreased when 0.02% or more $\beta$-carotene was supplemented in the diet. The liver lipofuscin level in the diabetic control group was higher than in the non-diabetic control group, but the effect of $\beta$-carotene supplementation did not show any differences. Superoxide dismutase activity was significantly lower in the diabetic group, but it was increased in groups receiving 0.02% or more $\beta$-carotene. Compared to the non-diabetic control group, lower activities of catalase and glutathione peroxidase were observed in the diabetic control group, although it was not significant. Catalase and glutathione peroxidase activities tended to increase as the levels of $\beta$-carotene supplementation increased, although it was not statistically significant. Therefore, it seems that dietary $\beta$-carotene supplementation might reduce diabetic complications by partly decreasing the lipid peroxidation and increasing the activity of antioxidative enzyme in diabetes.

Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View

  • Ahmadi, Zahra;Mohammadinejad, Reza;Roomiani, Sahar;Afshar, Elham Ghasemipour;Ashrafizadeh, Milad
    • Journal of Pharmacopuncture
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.