• Title/Summary/Keyword: Anti-Bacterial

Search Result 742, Processing Time 0.029 seconds

Effects of Dietary Supplementation of a New Probiotic CS61 Culture on Performance in Broiler Chickens (새로운 생균제 CS61 배양액의 사료 내 급여가 육계의 생산성에 미치는 영향)

  • Kim, Sung-Hwan;Lee, In-Chul;Baek, Hyung-Seon;Kang, Seong-Soo;Kim, Hyoung-Chin;Yoo, Jin-Cheol;Kim, Jong-Choon
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.340-346
    • /
    • 2012
  • Bacterial resistance to antibiotics and residues of antibiotics in poultry products have encouraged the use of probiotics, prebiotic substrates, and synbiotic combinations of prebiotics and probiotics as alternative approaches to the use of antibiotics in poultry. The present study was carried out to evaluate the effect of a new probiotic CS61 culture on growth performance, feed conversion efficiency, and safety in broiler chickens, and to evaluate its value as an alternative for antibiotics used as a feed additive. Two dosages of CS61 culture (0.1% and 1%) were fed to chickens for 28 days. The results showed that terminal body weight and daily weight gain in the treatment groups increased in a dose-dependent manner when compared with the control group. Dietary supplementation with CS61 culture also improved feed conversion rate compared to the control group. There were no treatment-related toxic effects in terms of clinical findings, mortality, necropsy findings, hematology, or serum biochemistry parameters in any group tested. The nitric oxide assay showed that CS61 peptide has a dose-dependent inhibitory effect on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results of this experiment indicated that dietary supplementation of CS61 culture may improve growth performance and feed conversion efficiency in chickens through its anti-inflammatory effect.

Study on Antibacterial Activity of Ag Nanometal-deposited TiO2 Prepared by Sonochemical Reduction Method (초음파환원법에 의해 제조된 Ag-TiO2의 항균 활성도 고찰)

  • Jung, Hye Yeon;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • In this work, Ag-$TiO_2$ nanocomposites were prepared via the sonochemical deposition of Ag nanometals on $TiO_2$ nanoparticles. The size of deposited Ag nanometals was ranged in 1~3 nm and the number of Ag nanometals deposited on $TiO_2$ increased in proportion to the dosage amounts of Ag precursors. As-prepared Ag-$TiO_2$ was loaded on the sterilized agar plate together with an aliquot volume of diluted E-coli, followed by 30 min irradiation of the solar simulated light ($600{\sim}1800{\mu}w/cm^2$). Finally, the agar plate was incubated for 24 h at $37^{\circ}C$ and the number of survived colonies were counted. It was experimentally confirmed that Ag-$TiO_2$ exhibited the higher antimicrobial activity than that of pure $TiO_2$, based on measuring the colony number of control sample. The survived colony numbers on the agar plate decreased with the increase of dosage amounts of Ag-$TiO_2$ and the irradiated intensity of solar simulated light for 30 min before incubating. The increase of Ag nanometal doposition induced the progressive enhancement of antimicrobial activity, but rather reduced the photocatalytic activity of Ag-$TiO_2$ probably due to the excessive presence of Ag nanometals on $TiO_2$ matrix.

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans (해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향)

  • Moon, Kyung Hoon;Lee, Yun-Chae;Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.712-723
    • /
    • 2019
  • Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

Antimicrobial Effect of Natural Plant Extracts against Periodontopathic Bacteria (치주염 원인균에 대한 천연 식물 추출물의 항균효과)

  • Lee, Seung-Hee;Kim, Min-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.242-255
    • /
    • 2019
  • In this study, we examined the antimicroboal effect against Actinobacillus actinomycetemcomitans and Prevotella intermedia which were the bacteria causing the Periodontopathic by using 34 types of natural plant extracts. Therefore, this study measures growth inhibition activity and Minimum Inhibition Concentration (MIC) of a sample extract with the use of organic solvent extracts in order to analyze the antibacterial effect of natural plant extracts on periodontopathic bacteria. Each of the 34 types of natural plant extracts were extracted by using the ethanol, and subsequently, the size of growth inhibition zone(clear zone, ㎜) of respective extracts were measured through the disk diffusion method. As a result, it was found that the growth inhibitory activity was found for A. actinomycetemcomitans, which is the bacteria causing the Periodontitis, in 13 types of natural plant extracts such as Raphanus sativus, Akebia quinata, Paeonia lactiflora, Belamcanda chinensis, Inula britannics, Houttuynia cordata, Forsythia saxatilis, Gentiana macrophylla, Melia azedarach, Scutellaria baicalensis, Coptis chinensis, Phellodendron amurense, Kalopanax Pictus, etc. In the case of P. intermedia, the growth inhibitory activity was found in 13 types of natural plant extracts such as Raphanus sativus, Angelica acutiloba, Akebia quinata, Belamcanda chinensis, Inula britannics, Houttuynia cordata, Cinnamomum cassia, Aster tataricus, Melia azedarach, Scutellaria baicalensis, Coptis chinensis, Phellodendron amurense, Kalopanax Pictus etc. For A. actinomycetemcomitans, anti-bacterial effect was exhibited in Belamcanda chinensis, Cinnamomum cassia, Kalopanax Pictus, Phellodendron amurense, Coptis chinensis. The Coptis chinensis showed the most excellent growth inhibitory activity in all organic solvent fragment, while P. intermedia showed the growth inhibitory activity in Belamcanda chinensis, Cinnamomum cassia, Meliaazedarach, Phellodendron amurense, and Coptis chinensis.

Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α

  • Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.270-286
    • /
    • 2019
  • Purpose: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. Methods: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha ($TNF-{\alpha}$). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. Results: $TNF-{\alpha}$ downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by $TNF-{\alpha}$ was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with $TNF-{\alpha}$. In addition, vitamin D downregulated $TNF-{\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. Conclusions: These results suggest that vitamin D may avert $TNF-{\alpha}$-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by $TNF-{\alpha}$. Vitamin D may reinforce ECJs by downregulating $NF-{\kappa}B$ signaling, which is upregulated by $TNF-{\alpha}$. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.

Filtration Efficiencies of Commercial Face Masks in Korea for Biological Aerosols (국내 출시 마스크의 바이오에어로졸 여과효율 평가)

  • Choi, Sueun;Choi, Doseon;Jang, Sung Jae;Park, SungJun;Yoon, Chungsik;Lee, Kiyoung;Ko, GwangPyo;Lee, Cheonghoon
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.116-122
    • /
    • 2022
  • Background: The recent COVID-19 pandemic is one of the worst disease outbreaks of the 21th century. Due to a lack of reliable antiviral therapeutics, wearing face masks is recommended to prevent airborne infection originating from virus-contaminated bioaerosols. Objectives: The aim of this study was to evaluate the filtration efficiencies of face masks that are commercially available in South Korea for a biological aerosol of Staphylococcus aureus (S. aureus) and murine coronavirus, a well-known surrogate for human coronaviruses. Methods: We collected six different kinds of commercial masks: two Korea Filter (KF)94 (KF94-1, KF94-2) masks, one surgical (Surgical-1) mask, one anti-droplet (KF-AD-1) mask, and two dust (Dust-1, Dust-2) face masks. S. aureus (ATCC 6538), a well-performing test bacteria and murine coronavirus (ATCC VR-764) were prepared under a suitable culture condition. Then, a mask biological filtration tester was used to examine the microbial filtration efficiencies of masks. Test microorganisms were quantitatively measured via cultivation methods and microbial filtration efficiencies were calculated appropriately. Results: All face masks showed over 99.6% filtration efficiency for S. aureus or murine coronavirus. There were no significant differences among the bacterial filtration efficiencies of the face masks. KF94-1 (99.97±0.08%) and Dust-1 mask (99.97±0.07%) showed the highest (over 99.9%) filtration efficiency for murine coronavirus. KF94-1 or Dust-1 masks showed a significant virus filtration efficiency compared to Surgical-1 mask (p<0.05; Mann-Whitney U test). Conclusions: All the commercially available face masks used in this study can filter S. aureus or murine coronavirus in bioaerosols efficiently, regardless of the mask type. Therefore, our results suggest that wearing a certified face mask is a reliable means to prevent the transmission of infectious airborne diseases via biological aerosols.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Protective effects of Portulaca oleracea against cerulein-induced acute pancreatitis (마치현(馬齒莧)의 급성 췌장염 보호 효과)

  • Gwak, Tae-Sin;Kim, Dong-Goo;Kim, Ju-Young;Bae, Gi-Sang;Choi, Sun-Bok;Jo, Il-Joo;Shin, Joon-Yeon;Lee, Sung-Kon;Kim, Myoung-Jin;Kim, Min-Jun;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • Objective : Portulaca oleracea (PO) has been used as an important traditional medicine for inflammatory and bacterial diseases in East Asia. However, the protective effects of PO on acute pancreatitis (AP) is not well-known. Therefore, this study was performed to identify the anti-inflammatory and prophylactic effects of PO on cerulein-induced AP. Methods : AP was induced in mice via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein ($50{\mu}g/kg$) given every hour for 6 times. Water extracts of PO (100, 300, or 500 mg/kg) was administrated intra-peritoneally 1 h prior to the first injection of cerulein. The mice were killed at 6 h after the final cerulein injection. Pancreas and lung were rapidly removed for morphologic and histochemical examination, myeloperoxidase (MPO) assay. Blood samples were taken to determine serum amylase and lipase activities. Results : Administration of PO significantly inhibited pancreatic weight/body weight ratio, pancreas and lung histological injury. And MPO activity which indicates neutrophil infiltration was inhibited by PO extracts on cerulein-induced pancreatitis. In addition, PO administration inhibited digestive enzymes such as serum amylase and lipase activity on cerulein-induced pancreatitis. Conclusion : Our results could suggest that pre-treatment of PO reduces the severity of cerulein-induced AP, thereby, PO could be used as a protective agent against AP. Also, this study could give a clinical basis that PO could be a drug or agent to prevent AP.

Effect of Prenatal Antibiotic Exposure on Neonatal Outcomes of Preterm Infants

  • Kim, Hyunjoo;Choe, Young June;Cho, Hannah;Heo, Ju Sun
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.3
    • /
    • pp.149-159
    • /
    • 2021
  • Purpose: Antibiotic exposure during pregnancy may affect the fetus and newborn in many ways. This study investigated the impact of prenatal antibiotic exposure duration on neonatal outcomes in very preterm (VP) or very low birth weight (VLBW) infants. Methods: From September 2015 to December 2020, preterm infants with gestational age less than 32 weeks or with a BW less than 1,500 g who were admitted to the neonatal intensive care unit, and their mothers were enrolled. Prenatal antibiotic exposure was defined as antibiotics received by mothers before delivery, and the patients were categorized into the non-antibiotic group, short-duration (SD; ≤7 days) group, or long-duration (LD; >7 days) groups. Results: A total of 93 of 145 infants were exposed to prenatal antibiotics, among which 35 (37.6%) were in the SD group and 58 (62.4%) were in the LD group. Infants in the LD group had a significantly higher birth weight-for-gestational-age (BW/GA) Z-score than those in the non-antibiotic group, even after the adjustment for confounding factors (beta, 0.258; standard error, 0.149; P<0.001). Multivariate logistic regression analysis showed that prolonged prenatal antibiotic exposure was independently associated with death (adjusted odds ratio [aOR], 8.926; 95% confidence interval [CI], 1.482-53.775) and composite outcomes of death, necrotizing enterocolitis (NEC), and late-onset sepsis (LOS) (aOR, 2.375; 95% CI, 1.027-5.492). Conclusions: Prolonged prenatal antibiotic exposure could increase the BW/GA Z-score and the risk of death and composite outcomes of death, NEC, and LOS in VP or VLBW infants.

Production of Carotenoids by Bacteria; Carotenoid Productivity and Availability (박테리아에 의한 카로티노이드 생산; 카로티노이드 생산성 및 활용 가능성)

  • Choi, Seong Seok;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2022
  • Carotenoids are red, orange, and yellow fat-soluble pigments that exist in nature, and are known as physiologically active substances with various functions, such as provitamin A, antioxidant, anti-inflammatory, and anticancer. Because of their physiological activity and color availability, carotenoids are widely used in the food, cosmetics, and aquaculture industries. Currently, most carotenoids used industrially use chemical synthesis because of their low production cost, but natural carotenoids are in the spotlight because of their safety and physiologically active effects. However, the production of carotenoids in plants and animals is limited for economic reasons. Carotenoids produced by bacteria have a good advantage in replacing carotenoids produced by chemical synthesis. Since carotenoids produced from bacteria have limited industrial applications due to low productivity, studies are continuously being conducted to increase the production of carotenoids by bacteria. Studies conducted to increase carotenoid production from bacteria include the activity of enzymes in the bacterial carotenoid biosynthesis pathway, the development of mutant strains using physical and chemical mutagens, increasing carotenoid productivity in strain construction through genetic engineering, carotenoid accumulation through stress induction, fermentation medium composition, culture conditions, co-culture with other strains, etc. The aim of this article was to review studies conducted to increase the productivity of carotenoids from bacteria.