• Title/Summary/Keyword: Anti-Alzheimer

Search Result 206, Processing Time 0.025 seconds

Utilization and Isolation of new active substances from Sericulture Related MaterialsI.Potentiation of Mulberry leaves for diseases attacking aged population

  • Lee, Won-Chu;Kim, Sun-Yeou
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.119-131
    • /
    • 1997
  • As the average span of human life is continuously increasing, especially the old aged groups, are suffering from various chronic and critical diseases e.g. cardiovascular diseases, coronary heart disease, diabetes, atherosclerosis and alzheimer's etc. However, effective and safe treatment methods have not yet been investigated threathening old aged groups. This research was planned to isolate compounds with the therapeutic potential for the above mentioned chronic diseases from the mulberry leaves. Biological screenings were carried out for the following categories; anti-atherogenic, anti-diabetic and antihypertensive effects. The results were as follows; Mulberry leaves, 20% $\alpha$-treated Gaelyrangppong showed significant 81% of blood glucose lowering effects in alloxan-induced hyperglycemic mice. Particularly, butanol-soluble fractions of mulberry leaves showed the more significant hypoglycemic activity than other fractions in alloxan induced hyperhlycemic mice. Also in the group given 1g/kg doses of extract of mulberry leaves, total cholesterol level was decreased significantly by as much as 49% in hyperlipidemia-induced rats. In Mulberry leaves post-treated group, the atheroscelosis index, HDL-cholesterol/Total-cholesterol, was increased significantly by as much as 91%.

Effects of Sotosaja-hwan on the Generation of ROS, RNS, and on the Expression of NF-${\kappa}B$-dependent Proteins in ob/ob Mouse (소도사자환이 ob/ob mouse에서 ROS/ RNS 생성 억제 및 NF-${\kappa}B$ 의존성 단백질에 미치는 영향)

  • Bang, Yong-Suk;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.51-63
    • /
    • 2009
  • Objectives: Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}{O_2}^-$ and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the $ONOO^-$, NO, ${\cdot}{O_2}^-$ scavenging and NF-${\kappa}B$ related anti-inflammatory activities of Sotosaja-hwan in ob/ob mice. Methods: Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Sotosaja-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blotting was performed using anti-phospho-$I{\kappa}B$-${\alpha}$, anti-IKK-${\alpha}$, anti-NF-${\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-YCAM-1 and anti-MMP-9 antibodies, respectively. Results: Sotosaja-hwan inhibited the generation of $ONOO^-$, NO and ${\cdot}{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}{O_2}^-$ and PGE2 were inhibited in the Sotosaja-hwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas the ratio was improved in the Sotosaja-hwan-administered groups. Sotosaja-hwan inhibited the protein expression levels of phospho-$I{\kappa}B$-${\alpha}$, IKK-${\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, YCAM-1 and MMP-9 genes. Conclusions: These results suggest that Sotosaja-hwan is an effective $ONOO^-$, ${\cdot}{O_2}^-$ and NO scavenger and has NF-kB related anti-inflammatory activity in ob/ob mice. Therefore, Sotosaja-hwan might be a potential therapeutic drug against the inflammation process and inflammation-related diseases.

  • PDF

Gas Chromatographic Analysis and Cholinesterase Activity of the Essential Oil from Korean Agastache rugosa (기체크로마토그래피에 의한 한국산 배초향의 정유 분석과 Cholinesterase 억제활성)

  • Choi, Jae Sue;Song, Byong-Min;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The herb of Agastache rugosa (Lamiaceae) called Korean mint as a spice or Agastache Herba as a crude drug is known to contain highly fragrant volatile substances. This research aimed to establish the quantitative gas chromatography (GC) method on the essential oil of A. rugosa using the three standard compounds, estragole, methyleugenol, pulegone, and to find whether the essential oil has anti-Alzheimer's activity. The GC quantification method was established by determining the linearity of calibration curve ($R^2$), linear range, and both limit-of-detection (LOD) and limit-of-quantification (LOQ). The $IC_{50}$ of the essential oil on the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined to be $69.06{\pm}0.26$ and $76.71{\pm}0.58{\mu}g/ml$, respectively.

Inhibitory Effects of of Tacrine Derivatives on Activity of Prostanoids Biosynthesis Prostaglandin Biosynthesis: A Potential Use for Degenerative Brain Disease Treatment (퇴행성 뇌질환 치료제 Tacrine 유도체의 프로스타글란딘 생합성 억제효과)

  • Shin Hea Soon
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • Tacrine analogues for degenerative brain disease treatments have been designed. A series of diazaanthrine derivatives as novel analogues of tacrine has been prepared through the alkyl substitution and the ring expansion. They were expected to retain anti-inflammatory activity by inhibition of prostaglandin production with reduction of side effect as the selective prostaglandin synthase inhibitor. Prostaglandin synthase expression is associated with the deposition of beta-amyloid protein in neuritic plaques in brain inflammation. Therefore selective prostaglandin synthase blockade is important for the prevention and treatment of alzheimer's disease. To evaluate inhibitory effect of prostaglandin synthase, synthetic tacrine derivatives were screened with accumulation of prostaglandin biosynthesis by lipopolysaccharide in aspirin-treated murine macrophage cell. Most of synthetic compounds have shown significant prostaglandin synthase activities in vitro screening with $84.3{\sim}33.6\%$ inhibition of the prostaglandin $E_2$ production at $10\;{\mu}g/ml$.

Protective Effect of Celecoxib, a Selective Cyclooxygenase-2 Inhibitor, Against Beta-Amyloid-Induced Apoptosis: Possible Involvement of Proinflammatory Signals in Beta-Amyloid-Mediated Cell Death

  • Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.139-140
    • /
    • 2003
  • Inflammatory as well as oxidative tissue damage has been implicated in pathophysiology of Alzheimer's disease (AD), and non-steroidal anti-inflammatory drugs have been reported to have beneficial effects in the treatment or prevention of AD. In the present study, we investigated the effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on inflammatory cell death induced by beta-amyloid, a neurotoxic peptide associated with senile plaques formed in the brains of patients with AD.(omitted)

  • PDF

REGULATION OF BETA-AMYLOID-STIMULATED PRO INFLAMMATORY RESPONSES VIA MITOGEN ACTIVATED PROTEIN KINASES AND REDOX SENSITIVE TRANSCRIPTION FACTORS

  • Hee, Jang-Jung;Joon, Surh-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.191-191
    • /
    • 2002
  • Inflammatory as well as oxidative tissue damage has been associated with pathophysiology of Alzheimer's disease (AD), and nonsteroidal anti-inflammatory drugs have been shown to retard the progress of AD. In this study, we have investigated the molecular mechanisms underlying oxidative and inflammatory cell death induced by beta-amyloid (Abeta), a neurotoxic peptide associated with senile plaques formed in the brains of patients with AD, in cultured PC12 cells.(omitted)

  • PDF

Effects of anti-inflammation and cell protection through biphenyl dimethyl dicarboxylate on Rat Microglia

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.132.1-132.1
    • /
    • 2003
  • Biphenyl dimethyl dicarboxylate (DDB) is a by-product produced in process of synthesizing Schizandrin-C. Generally, DDB has known to protect hepatocytes and to decrease the index of liver enzyme (e.g. GOT and GPT) in chronic hepatitis. The present study was aimed to demonstrate whether DDB can protect the brain cell, especially the Alzheimer brain in vitro. As Alzheimers disease can be induced by activated microglia, a macrophage in the brain, through Abeta peptide (A$\beta$) produced from amyloid precursor protein (APP). (omitted)

  • PDF

Neuroprotective Activity of Lonicerin Isolated from Lonicera japonica (금은화에서 분리한 Lonicerin의 신경세포보호 활성)

  • Lee, Hyunwoo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.19-25
    • /
    • 2021
  • We previously reported that lonicerin isolated from Lonicera japonica methanolic extract had potent neuro-protective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of L. japonica extract and lonicerin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of lonicerin. We used HT22 cell death injured by glutamate as a bioassay system. The compound decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by lonicerin treatment. This compound made mitochondrial membrane potential maintain to normal condition. Lonicerin also increased not only glutathione reductase but also peroxidase to the control level. And this compound increased amount of glutathione, an endogenous antioxidant. These results indicated that lonicerin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.

Animal Models of Cognitive Deficits for Probiotic Treatment

  • Kwon, Oh Yun;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.981-995
    • /
    • 2022
  • Cognitive dysfunction is a common symptom of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and is known to be caused by the structural and functional loss of neurons. Many natural agents that can improve cognitive function have been developed and assessed for efficacy using various cognitive deficit animal models. As the gut environment is known to be closely connected to brain function, probiotics are attracting attention as an effective treatment target that can prevent and mitigate cognitive deficits as a result of neurodegenerative diseases. Thus, the objective of this review is to provide useful information about the types and characteristics of cognitive deficit animal models, which can be used to evaluate the anti-cognitive effects of probiotics. In addition, this work reviewed recent studies describing the effects and treatment conditions of probiotics on cognitive deficit animal models. Collectively, this review shows the potential of probiotics as edible natural agents that can mitigate cognitive impairment. It also provides useful information for the design of probiotic treatments for cognitive deficit patients in future clinical studies.

Neuroprotective Activity of Luteolin Isolated from Lonicera japonica (금은화에서 분리한 luteolin의 신경세포보호 활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In the previous study, we reported that luteolin isolated from Lonicera japonica methanolic extract had potent neuroprotective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of luteolin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of luteolin. We used HT22 cell death injured by glutamate as a bioassay system. Luteolin decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by luteolin treatment. Luteolin made mitochondrial membrane potential maintain to normal condition. It also increased not only glutathione reductase but also peroxidase to the control level. And it increased amount of glutathione, an endogenous antioxidant. These results suggested that luteolin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.