Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.1.19

Neuroprotective Activity of Lonicerin Isolated from Lonicera japonica  

Lee, Hyunwoo (Department of Biomedical Science, College of Biomedical Science, Kangwon National University)
Ma, Choong Je (Department of Biomedical Science, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.1, 2021 , pp. 19-25 More about this Journal
Abstract
We previously reported that lonicerin isolated from Lonicera japonica methanolic extract had potent neuro-protective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of L. japonica extract and lonicerin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of lonicerin. We used HT22 cell death injured by glutamate as a bioassay system. The compound decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by lonicerin treatment. This compound made mitochondrial membrane potential maintain to normal condition. Lonicerin also increased not only glutathione reductase but also peroxidase to the control level. And this compound increased amount of glutathione, an endogenous antioxidant. These results indicated that lonicerin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.
Keywords
Lonicera japonica; Lonicerin; Neuroprotection; Antioxidant; Alzheimer's disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yan, M. H., Wang, X. L. and Zhu, X. W. (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Rad. Biol. Med. 62: 90-101.   DOI
2 Carrano, A., Hoozemans, J. J. M., van der Vies, S. M., Rozemuller, A. J. M., van Horssen, J. and de Vries, H. E. (2011) Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid. Redox. Signal 15: 1167-1178.   DOI
3 Helmut, S. (1999) Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27: 916-921.   DOI
4 Qi, L-W., Chen, C-Y. and Li, P. (2009) Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry. Rapid Comm. Mass Spectrom. 23: 3227-3242.   DOI
5 Jung, Y. S., Weon, J. B., Yang, W. S., Ryu, G. and Ma, C. J. (2018) Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells. Sci. Rep. 8: 9693.   DOI
6 Meldrum, B. S. (2002) Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog. Brain Res. 135: 3-11.   DOI
7 Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science. 262: 689-695.   DOI
8 Ferreiro, E., Balderias, I., Ferreira, I. L., Costa, R. O., Rego, A. C., Pereira, C. F. and Oliveira, C. R. (2012) Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int. J. Cell Biol. 2012: 735206.   DOI
9 Armstead, W. M., Mirro, R., Leffler, C. W. and Busija, D. W. (1989) Cerebral superoxide anion generationduring seizures in newborn pigs. J. Cereb. Blood Flow Metab. 9: 175-179.   DOI
10 Parfenova, H., Carratu, P., Tcheranova, D., Fendinec, A., Pourcyrous, M. and Leffler, C. W. (2005) Epileptic seizures cause extended postictal cerebral vascular dysfunction that is prevented by HO-1 overexpression. Heart Cir. Physiol. 288: H2843-2850.   DOI
11 Lee, Y., Shin, D. H., Kim, J. H., Hong, S., Choi, D., Kim, Y. J., Kwak, M. K. and Jung, Y. (2010) Caffeic acid phenethyl ester mediated Nrf2 activation and IkappaB kinase inhibition are involved in NFkappaB inhibitory effect: structural analysis for NFkappaB inhibition. Eur. J. Pharmacol. 643: 21-28.   DOI
12 Li, M. H., Inoue, K., Si, H. F. and Xiong, Z. H. (2011) Calcium-permeable ion channels involved in glutamate receptorindependent ischemic brain injury. Acta Pharmacol. Sin. 32: 734-740.   DOI
13 Ward, M. W., Rego, A. C., Frenguelli, B. G and Nicholls, D. G. (2000) Mitochondrial membrane potential and glutamate exicitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20: 7208-7219.   DOI
14 Kushairi, N., Phan, C. W., Sabaratnam, V., David, P. and Naidu, M. (2019) Lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) pers. suppresses H2O2-induced oxidative damage and LPS-induced inflammation in HT22 hippocampal neurons and BV2 microglia. Antioxidants 8: 261.   DOI
15 Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D. and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22: 10690-10698.   DOI
16 Steckley, D., Karajgikar, M., Dale, L. B., Fuerth, B., Swan, P., Drummond-Main, C.,Poulter, M. O., Ferguson, S. S. G., Strasser, A. and Cregan, S. P. (2007) Puma is adominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci. 27: 12989-12999.   DOI
17 Bradley, M. A., Markesbery, W. R. and Lovell, M. A. (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Rad. Biol. Med. 48: 1570-1576.   DOI
18 Mattson, M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430: 631-639.   DOI
19 Seidler, N. W. and Squire, T. J. (2005) A beta-polyacrolein aggregates: novel mechanism of plastic formation in senile plaques. Biochem. Biophys. Res. Comm. 335: 501-504.   DOI
20 Kuhla, B., Haase, C., Flach, K., Luth, H. J., Arendt, T. and Munch, G. (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J. Biol. Chem. 282: 6984-6991.   DOI
21 Srivastava, S., Sithu, S. D., Vladykovskaya, E., Haberzettl, P., Hoetker, D. J., Siddiqui, M. A., Conklin, D. J., D'Souza, S. E. and Bhatnagar, A. (2011) Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis 215: 301-308.   DOI
22 Sultana, R. and Butterfield, D. A. (2010) Role of oxidative stress in the progression of Alzheimer's disease. J. Alzheimer's Dis. 19: 341-353.   DOI
23 Weon, J. B., Yang, H. J., Lee, B., Yun, B-. R., Ahn, J. H., Lee, H. Y. and Ma, C. J. (2011) Neuroprotective activity of the methanolic extract of Lonicera japonica in glutamate-injured primary rat cortical cells. Pharmacog. Mag. 7: 284-288.   DOI
24 Weon, J. B., Yang, H. J., Lee, B., Yun, B-. R. and Ma, C. J. (2011) Neuroprotective compounds isolated from the methanolic extract of Lonicera japonica. Nat. Prod. Sci. 17: 221-224.
25 Lin, M. T. and Beal, M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-795.   DOI
26 Kim, M. S., Seo, J. Y., Oh, J., Jang, Y. K., Lee, C. H. and Kim, J. S. (2017) Neuroprotective effect of halophyte Salicornia herbacea L. is mediated by activation of heme oxygenase-1 in mouse hippocampal HT22 cells. J. Med. Food 20: 140-151.   DOI
27 Pizarro, I. V., Swain, G. P. and Selzer, M. E. (2004) Cell proliferation in the lamprey central nervous system. J. Comp. Neurol. 469: 298-310.   DOI
28 Brewster, J. L., Linseman, D. A., Bouchard, R. J., Loucks, F. A., Precht, T. A., Esch, E. A. and Heidenreich, K. A. (2006) Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthasekinase-3 band a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol. Cell. Neurosci. 32: 242-253.   DOI
29 Xu, F., Cao, S., Wang, C., Wang, K., Wei, Y., Shao, X. and Wang, H. (2019) Antimicrobial activity of flavonoids from Sedum aizoon L. against Aeromonas in culture medium and in frozen pork. Food Sci. Nutr. 7: 3224-3232.   DOI
30 Scaria, B., Sood, S., Raad, C., Khanafer, J., Jayachandiran, R., Pupulin, A., Grewal, S., Okoko, M., Arora, M., Miles, L. and Pandey, S. (2020) Natural Health Products (NHP's) and natural compounds as therapeutic agents for the treatment of cancer; mechanisms of anti-cancer activity of natural compounds and overall trends. Int. J. Mol. Sci. 21: 8480.   DOI
31 Choudhary, M., Kumar, V., Malhotra, H. and Singh, S. (2015) Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol. 4: 147-179.   DOI
32 Lin, Y-P., Chen, T-Y., Tseng, H-W., Lee, M-H. and Chen, ST. (2009) Neural cell protective compounds isolated from Phoenix hanceana var. formosana. Phytochem. 70: 1173-1181.   DOI
33 Kim, N. M., Kim, J., Chung, H. Y. and Choi, J. S. (2000) Isolation of luteolin 7-O-rutinoside and esculetin with potential antioxidant activity from the aerial parts of Artemisia montana. Arch. Pharm. Res. 23: 237-239.   DOI