• 제목/요약/키워드: Anti TNF

Search Result 2,032, Processing Time 0.03 seconds

Anti-inflammatory effect of chloroform fraction of Coptidis rhizoma on the production of inflammatory mediators from LPS-stimulated BV2 microglial cells (황련 클로로포름 분획물의 뇌신경소교세포로부터 염증매개물질 생성억제 효능 연구)

  • Park, Yong-Ki;Lee, Kyuong-Yeol
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Objectives : In the present study, we investigated anti-inflammatory effects of chloroform fraction of Coptidis rhizoma (CR-C) on the production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines, tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-1beta (IL-1${\beta}$) in LPS-stimulated BV2 microglial cells. Methods : Copriditis rhizoma was extracted with 80% methanol, and then extracted with chloroform. BV2 cells were pre-treated with CR-C, and stimulated with LPS. The cytotoxicity was determined by MTT assay. The production of NO and cytokines was measured by Griess assay and ELISA. The mRNA expression of inducible nirtic oxide synthase (iNOS) and cytokines were determined by RT-PCR. Results : CR-C significantly inhibited the production of NO. TNF-${\alpha}$ and IL-1${\beta}$ in a dose-dependent manner in LPS-stimulated BV2 cells. In addition, CR-C suppressed the mRNA expressions of iNOS and inflammatory cytokines induced by LPS stimulation. These results indicate that CR-C was involved in anti-inflammatory effects in activated microglia. Conclusion : The present study suggests that chloroform extract of Coptidis rhizoma can be useful as a potential anti-inflammatory agent for treatment of various neurodegenerative diseases.

  • PDF

Experimental study of Gagam-Cheongsang BangPungTang on the anti-inflammatory effects (가감청상방풍탕(加減淸上防風湯)의 항염증 효과에 대한 실험적 연구)

  • Seo, Eun-Sung;Hwang, Chung-Yeon;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.2
    • /
    • pp.54-70
    • /
    • 2008
  • Background and Object : This study was carried out to investigate the effects of GCSBPT (Gagam-Cheongsang BangPungTang) on the in vitro and in vivo anti-inflammatory reactions. Methods : Vascular permeability and Cyclooxygenase inhibition assay are examined in vitro and nitric oxide inhibition assay, radical scavenging activity test, $TNF-{\alpha}$, COX-2 inhibition test are examined in vivo. Results : GCSBPT showed inhibitory effects on vascular permeability and leukocyte migration in animal test. In cyclooxygenase 2 inhibition assay, an ethanol extract of GCSBPT inhibited prostaglandin E2 generation at a concentration of $10{\mu}g/ml$. Among the herbal ingredients of GCSBPT, ethanol extracts of Nepetae Spica exhibited potent inhibitory activities. Ethanol extract of GCSBPT inhibited the release of nitric oxide and the gene expression of inducible nitric oxide synthase in RAW 246.7 cells stimulated by lipopolysaccharide. Ethanol extract of GCSBPT exhibited radical scavenging activity of 54% at $100{\mu}g/ml$. Among the herbal ingredients of GCSBPT. Conclusions : According to the above results, I expected that GCSBPT was a potent anti-inflammatory prescription.

  • PDF

Fatty Acid Composition and Anti-inflammatory Effects of the Freeze Dried Tenebrio molitor Larva (동결건조 갈색거저리 유충의 지방산 조성과 항염증 효과)

  • Kang, Mi-Sook;Kim, Min Ju;Han, Jung-Soon;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.251-256
    • /
    • 2017
  • This study aimed to assess fatty acid composition and anti-inflammatory effects, such as nitric oxide(NO) production, expression of $TNF-{\alpha}$ and interleukin-6(IL-6), of Tenebrio molitor larva using RAW 264.7 cells. The content of total fatty acid in Tenebrio molitor larva was 76.14%, which was composed of oleic acid(42.12%), linoleic acid(32.67%) etc. There was no cytotoxicity at a dose level of 0.1, 1.0, 10, and $100{\mu}g/mL$ of freeze dried Tenebrio molitor larva ethanol extract(FDTEtOH) on RAW 264.7 cells. FDTEtOH significantly decreased NO production in LPS(lipopolysaccharide)-stimulated RAW 264.7 cells in a dose-dependent manner. Also, FDTEtOH dose-dependently suppressed the expression of $TNF-{\alpha}$ and IL-6. Thus, these results showed that Tenebrio molitor larva has the potential to be used as an anti-inflammatory food to improve immunity.

Anti-inflammatory Effect of Gyulpidaehwangbakcho-tang (Jupidahuangpoxiao-tang) in the Collagen-induced Arthritis Mouse Model

  • Song, Young-Il;Oh, Min-Seok
    • The Journal of Korean Medicine
    • /
    • v.32 no.6
    • /
    • pp.18-29
    • /
    • 2011
  • Objectives: To investigate anti-inflammatory and anti-arthritic effects of Gyulpidaehwangbakcho-tang (GDBT) extract in a murine model of rheumatoid arthritis. Methods: The mice received $100{\mu}g$ of bovine type II collagen in Freund's complete adjuvant by intradermal injection at the base of the tail on day 0 and a booster injection on day 21. The mice were orally administered with GDBT (200 or 50mg/kg dissolved in distilled water) daily from day 1 to day 21 after arthritis incidence, and monitored for disease incidence and the severity of arthritis up to day 21. In order to evaluate the effect of GDBT on disease progression, we examined pro-inflammatory cytokines including IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2 and NOS-II. Results: GDBT produced a significant and dose dependent inhibition of arthritis and inflammation during the entire duration of the study. This action was characterized by the decreased production of IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, and NOS-II in vivo. Conclusion: We believe that the anti-arthritic activity of GDBT is due to its modulatory effect on the expression of pro-inflammatory cytokine in the synovium. Our results contribute towards validation of the traditional use of GDBT in the treatment of RA and other inflammatory joint disorders.

Anti-neuroinflammatory Effect of Plantago Major var. Japonica in BV-2 Microglial Cells

  • Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.411-415
    • /
    • 2017
  • To evaluate the protective effects of Plantago Major extract (PME) in stimulated BV-2 microglial cells and its anti-oxidant properties, cell viability assessment was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) was used to activate BV-2 microglia. Nitric oxide (NO) levels were measured using Griess assay. Tumor necrosis factor-alpha (TNF-${\alpha}$) production was evaluated by enzyme-linked immunosorbent assay (ELISA). Antioxidant properties were evaluated by 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. LPS-activated excessive release of NO in BV-2 cells was significantly inhibited by PME (P < 0.001 at $100{\mu}g/mL$). PME also scavenged DPPH radicals in a dose-dependent manner (P < 0.05 at $10{\mu}g/mL$ and P < 0.001 at $20{\sim}200{\mu}g/mL$). These results indicate that PME attenuated neuroinflammatory responses in LPS-activated BV-2 microglia by inhibiting excessive production of pro-inflammatory mediators such as NO and TNF-${\alpha}$. The anti-neuroinflammatory potential of PME may be related to its strong antioxidant properties.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.

Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells

  • Lee, Se-Young;Kim, Hak-Ju;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-$1{\beta}$ (IL-$1{\beta}$), Interleukin-6 (IL-6) and TNF-${\alpha}$] in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Cell viability, as measured by the MTT assay, showed that oyster shell extract had no significant cytotoxicity in Raw 264.7 cells. The treatment with oyster shell extract decreased the generation of intracellular reactive oxygen species dose dependently and increased antioxidant enzyme activities, such as SOD, catalase, GSH-px in LPS-stimulated macrophage cells. Oyster shell extract significantly suppressed the production of NO and also decreased the expressions of iNOS, COX-2 and NF-${\kappa}B$. Additionally, oyster shell extract significantly inhibited the production of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-stimulated Raw 264.7 cells. Thus, these results showed that the oyster shell extract had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells.

Anti-inflammatory Effect of Dactyloquinone B and Cyclospongiaquinone-1 Mixture in RAW264.7 Macrophage and ICR Mice

  • Lee, Dong-Sung;Hwang, In Hyun;Im, Nam-Kyung;Jeong, Gil-Saeng;Na, MinKyun
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.268-272
    • /
    • 2015
  • Sesquiterpene-quinone is a class of secondary metabolites frequently encountered from marine sponge. The present study was designed to examine the anti-inflammatory action of sponge-derived dactyloquinone B (DQB) and cyclospongiaquinone-1 (CSQ1) mixture using lipopolysaccharide (LPS)-induced inflammatory responses. We measured the production of nitric oxide (NO), tumor necrosis factor-alpha ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), and interleukin-6 (IL-6) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein. $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 production, which increased by treatment with LPS, were significantly inhibited by DQB and CSQ1 mixture. It also decreased the production of NO production, and iNOS and COX-2 expression. Furthermore, it reduced 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema of ICR mice. These results demonstrate that sesquiterpene-quinone, DQB and CSQ1 mixture, might serve as a chemical pipeline for the development of anti-inflammatory agent.

Anti-inflammatory Effects of Gagamtunong-san (가감투농산(加減透膿散)의 항염작용에 대한 실험적 연구)

  • Kim, Sang-Jin;Yoo, Dong-Youl
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 2008
  • The purpose of this research was to investigate the anti-inflammatory effects of Gagamtunong-san(GTNS) which has been medicated the patient such as mastitis. The results were as follows. The cytotoxicity on mouse lung fibroblast Cells(mLFC) was not served at all concentration of GTNS. GTNS in RAW264.7 cell inhibited $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, COX-2 and NOS-II mRNA genes expression in a concentration-dependent manner. Specially GTNS inhibited NOS-II production very significantly at 100 ${\mu}g/ml$. GTNS inhibited NO production significantly in a concentration-dependent manner. GTNS inhibited ROS production in a concentration-dependent manner. GTNS inhibited $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ production significantly in serum of acute anti-inflammation-induced mice. GTNS increased the survival rate from the 3rd day on LPS-induced lethal endotoxemia. These results suggest that Gagamtunong-san(GTNS) can be useful in treating a lot of women mammary diseases caused by inflammation such as acute and chronic mastitis.

Dapsone modulates lipopolysaccharide-activated bone marrow cells by inducing cell death and down-regulating tumor necrosis factor-α production

  • Kwon, Min-Ji;Joo, Hong-Gu
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.744-749
    • /
    • 2018
  • Dapsone, an antibiotic, has been used to cure leprosy. It has been reported that dapsone has anti-inflammatory activity in hosts; however, the anti-inflammatory mechanism of dapsone has not been fully elucidated. The present study investigated the anti-inflammatory effects of dapsone on bone marrow cells (BMs), especially upon exposure to lipopolysaccharide (LPS). We treated BMs with LPS and dapsone, and the treated cells underwent cellular activity assay, flow cytometry analysis, cytokine production assessment, and reactive oxygen species assay. LPS distinctly activated BMs with several characteristics including high cellular activity, granulocyte changes, and tumor necrosis factor alpha ($TNF-{\alpha}$) production increases. Interestingly, dapsone modulated the inflammatory cells, including granulocytes in LPS-treated BMs, by inducing cell death. While the percentage of Gr-1 positive cells was 57% in control cells, LPS increased that to 75%, and LPS plus dapsone decreased it to 64%. Furthermore, dapsone decreased the mitochondrial membrane potential of LPS-treated BMs. At a low concentration ($25{\mu}g/mL$), dapsone significantly decreased the production of $TNF-{\alpha}$ in LPS-treated BMs by 54%. This study confirmed that dapsone has anti-inflammatory effects on LPS-mediated inflammation via modulation of the number and function of inflammatory cells, providing new and useful information for clinicians and researchers.