• Title/Summary/Keyword: Anterior Cingulate Cortex

Search Result 53, Processing Time 0.023 seconds

Detecting Deception Using Neuroscience : A Review on Lie Detection Using Functional Magnetic Resonance Imaging (거짓 탐지와 뇌과학 : 기능적 자기공명영상을 활용한 거짓 탐지)

  • Choi, Yera;Kim, Sangjoon;Do, Hyein;Shin, Kyung-Shik;Kim, Jieun E.
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.3
    • /
    • pp.109-112
    • /
    • 2015
  • Since the early 2000s, there has been a continued interest in lie detection using functional magnetic resonance imaging (fMRI) in neuroscience and forensic sciences, as well as in newly emerging fields including neuroethics and neurolaw. Related fMRI studies have revealed converging evidence that brain regions including the prefrontal cortex, anterior cingulate cortex, parietal cortex, and anterior insula are associated with deceptive behavior. However, fMRI-based lie detection has thus far not been generally accepted as evidence in court, as methodological shortcomings, generalizability issues, and ethical and legal concerns are yet to be resolved. In the present review, we aim to illustrate these achievements and limitations of fMRI-based lie detection.

Development of motor representation brain mechanism VR system using IMRI study: A Pilot Study (운동 표상과 관련된 뇌 메커니즘을 알아보기 위한 VR 시스템 개발 및 이를 이용한 fMRI 연구: 예비 실험)

  • Lee, Won-Ho;Ku, Jeong-Hun;Cho, Sang-Woo;Lee, Hyeong-Rae;Han, Ki-Wan;Park, Jin-Sick;Kim, Jae-Jin;Kim, In-Young;Kim, Sun-I.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.728-732
    • /
    • 2008
  • In this study, we developed motor representation brain mechanism system using fMRI and pilot study is performed, fMRI task were composed two tasks, which provided visual feedback and hid visual feedback. Left superior orbital gyrus, bilateral precentral gyrus, left superior occipital gyrus, left supplementary motor area, right thalamus, right postcentral gyrus and right superior parietal lobule activated with visual feedback. Left precuneus, right middle temporal gyrus, bilateral supplementary motor area, right anterior cingulate cortex, left Inferior temporal gyrus, left insula lobe, right superior parietal lobule, bilateral postcentral gyrus and left precentral gyrus activated without visual feedback. We could found brain mechanism of motor representation using without visual feedback.

  • PDF

Neural Substrates of Posttraumatic Stress Disorder : Functional Magnetic Resonance Imaging Study Using Negative Priming Task (외상 후 스트레스 장애의 신경기반 : 부적점화과제와 기능자기공명영상 연구)

  • Lee, Byeong-Taek;Ryu, Jeong;Lee, Dong Hoon;Sohn, Myeong-Ho;Kang, Nae Hee;Ham, Byung-Joo;Choi, Nam Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • Objectives : Posttraumatic stress disorder(PTSD) has been primarily associated with emotional problems. Recently, however, the impact of PTSD on cognitive processes has interested a growing number of researchers. The current study is aimed at investigating the cognitive aspects of PTSD at both behavioral and neurological levels. Methods : We recruited individuals with PTSD who survived the Daegu subway explosion in 2003 as well as non-PTSD individuals as a control group. To evaluate the inhibitory processes and the neural mechanisms, we had these individuals perform the negative priming task simultaneously with functional MRI scanning. Results : Behaviorally, the negative priming effect was intact in the control group but was not evident in the PTSD group. In the imaging results, only the PTSD group showed the negative priming effect (i.e., increased activation of the negative priming condition as opposed to the neutral condition) in the dorsolateral prefrontal cortex, anterior cingulate cortex, and inferior temporal gyrus. The PTSD group also showed increased activity for the positive priming condition as opposed to the neutral condition in the claustrum. These results confirm and extend the previous findings that the integrity of the ACC is compromised in the trauma survivors due to disrupted white matter tract. Conclusions : The current results suggest that deteriorated performance of the PTSD group may be due to the functional problem as well as the structural abnormalities.

  • PDF

Neural circuit remodeling and structural plasticity in the cortex during chronic pain

  • Kim, Woojin;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

The Effect on Activity of Cerebral Cortex by Key-point Control of The Adult Hemiplegia with fMRI (fMRI를 이용한 성인 편마비의 항조절점 운동이 대뇌피질의 활성화에 미치는 효과)

  • Lee Won-Kil
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.295-345
    • /
    • 2003
  • This study investigated activation of cerebral cortex in patients with hemiplegia that was caused by neural damage. Key-point control movement therapy of Bobath was performed for 9 weeks in 3 subjects with hemiplegia and fMRI was used to compare and analyze activated degree of cerebral cortex in these subjects. fMRI was conducted using the blood oxygen level-dependent(BOLD) technique at 3.0T MR scanner with a standard head coil. The motor activation task consisted of finger flexion-extension exercise in six cycles(one half-cycles = 8 scans = $3\;sec{\times}\;8\;=\;24\;sec$). Subjects performed this task according to visual stimulus that sign of right hand or left hand twinkled(500ms on, 500ms off). After mapping activation of cerebral motor cortex on hand motor function, below results were obtained. 1. Activation decreased in primary motor area, whereas it increased in supplementary motor area and visual association area(p<.001). 2. Activation was observed in bilateral medial frontal gyrus, middle frontal gyrus of left cerebrum, inferior frontal gyrus, inter-hemispheric, fusiform gyrus of right cerebrum, superior parietal lobule of parietal lobe and precuneus in subjedt 1, parahippocampal gyrus of limbic lobe and cingulate gyrus in subject 2, and inferior frontal gyrus of right frontal lobe, middle frontal gyrus, and inferior parietal lobule of left cerebrum in subject 3 (p<.001). 3. Activation cluster extended in declive of right cellebellum posterior lobe in subject 1, culmen of anterior lobe and declive of posterior lobe in subject 2, and dentate gyrus of anterior lobe, culmen and tuber of posterior lobe in subject 3 (p<.001). In conclusion, these data showed that Key-point control movement therapy of Bobath after stroke affect cerebral cortex activation by increasing efficiency of cortical networks. Therefore mapping of brain neural network activation is useful for plasticity and reorganization of cerebral cortex and cortico-spinal tract of motor recovery mechanisms after stroke.

  • PDF

Characteristics of Intrinsic Functional Connectivity of Amygdalar Subregions in Social Anxiety Disorder (사회불안장애에서 편도 하위영역의 내재 기능적 연결성의 특성)

  • Kim, Jinseong;Yoon, Hyung-Jun;Park, Sunyoung;Shin, Yu-Bin;Kim, Jae-Jin
    • Anxiety and mood
    • /
    • v.10 no.1
    • /
    • pp.44-51
    • /
    • 2014
  • Objective : The amygdala has been considered to be a critical region in the pathophysiology of social anxiety disorder, but subregional connectivity pattern has not been examined yet despite lots of previous functional neuroimaging studies. Methods : Resting-state functional magnetic resonance imaging data was obtained in 19 patients with social anxiety disorder and 20 normal controls, and default mode functional connectivity with each of basolateral, centromedial and superficial areas of the amygdala was measured and compared between the two groups. Results : Differential amygdala-based networks between the two groups were distributed to all over the brain. In particular, however, a bias on the amygdala-cingulate pathway was observed in the superficial amygdala only. Connectivity strengths between the superficial amygdala and perigenual anterior cingulate cortex were correlated with scores of social interaction and avoidance. Conclusion : Our findings provide new insights into understanding of the intrinsic cognitive bias model of social anxiety disorder. An abnormality in superficial amygdala-anterior cingulate connectivity may influence on cognitive processing of socially-relevant information in social anxiety disorder.

Neuromodulation for Trigeminal Neuralgia

  • Chung, Moonyoung;Huh, Ryoong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.640-651
    • /
    • 2022
  • Clinical studies on neuromodulation intervention for trigeminal neuralgia have not yet shown promising results. This might be due to the fact that the pathophysiology of chronic trigeminal neuropathy is not yet fully understood. Chronic trigeminal neuropathy includes trigeminal autonomic neuropathy, painful trigeminal neuropathy, and persistent idiopathic facial pain. This disorder is caused by complex abnormalities in the pain processing system, which is comprised of the affective, emotional, and sensory components, rather than mere abnormal sensation. Therefore, integrative understanding of the pain system is necessary for appropriate neuromodulation of chronic trigeminal neuropathy. The possible neuromodulation targets that participate in complex pain processing are as follows : the ventral posterior medial nucleus, periaqueductal gray, motor cortex, nucleus accumbens, subthalamic nucleus, globus pallidus internus, anterior cingulate cortex, hypothalamus, sphenopalatine ganglion, and occipital nerve. In conclusion, neuromodulation interventions for trigeminal neuralgia is yet to be elucidated; future advancements in this area are required.

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

Surgery of Parasplenial Arteriovenous Malformation with Preservation of Vision - A Case Report - (부뇌량팽대 동정맥 기형의 수술에서 시야의 보존 - 증례보고 -)

  • Joo, Jin Yang;Ahn, Jung Yong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.815-821
    • /
    • 2000
  • Parasplenial arteriovenous malformations(AVMs) are rare vascular malformations which have distinct clinical and anatomical features. They are situated at the confluence of the hippocampus, isthmus of the cingulate gyrus and the gyrus occipitotemporalis medialis. These lesions are anterior to the calcarine sulcus and their apex extends towards the medial surface of the trigonum. Posterolaterally, these lesions are in close proximity to the visual cortex and optic radiation. The objectives in the surgery of parasplenial AVMs are complete resection of the lesions and preservation of vision. These objectives must be achieved with comprehensive understanding of the following anatomical features :1) the deep central location of the lesions within eloquent brain tissue ; 2) the lack of cortical representation of the AVMs that requires retraction of visual cortex ; 3) deep arterial supply ; 4) deep venous drainage ; 5) juxtaposition to the choroid plexus with which arterial supply and venous drainage are shared. A 16-year-old female student presented with intraventricular hemorrhage from a right parasplenial-subtrigonal AVM. The lesion, fed by posterior cerebral artery and drained into the vein of Galen, was successfully treated by the inter-hemispheric parietooccipital approach. To avoid visual field defect a small incision was made on precuneus anterior to the calcarine sulcus. In this report, the authors describe a surgical approach with special consideration on preservation of visual field.

  • PDF

Learning-associated Reward and Penalty in Feedback Learning: an fMRI activation study (학습피드백으로서 보상과 처벌 관련 두뇌 활성화 연구)

  • Kim, Jinhee;Kan, Eunjoo
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.1
    • /
    • pp.65-90
    • /
    • 2017
  • Rewards or penalties become informative only when contingent on an immediately preceding response. Our goal was to determine if the brain responds differently to motivational events depending on whether they provide feedback with the contingencies effective for learning. Event-related fMRI data were obtained from 22 volunteers performing a visuomotor categorical task. In learning-condition trials, participants learned by trial and error to make left or right responses to letter cues (16 consonants). Monetary rewards (+500) or penalties (-500) were given as feedback (learning feedback). In random-condition trials, cues (4 vowels) appeared right or left of the display center, and participants were instructed to respond with the appropriate hand. However, rewards or penalties (random feedback) were given randomly (50/50%) regardless of the correctness of response. Feedback-associated BOLD responses were analyzed with ANOVA [trial type (learning vs. random) x feedback type (reward vs. penalty)] using SPM8 (voxel-wise FWE p < .001). The right caudate nucleus and right cerebellum showed activation, whereas the left parahippocampus and other regions as the default mode network showed deactivation, both greater for learning trials than random trials. Activations associated with reward feedback did not differ between the two trial types for any brain region. For penalty, both learning-penalty and random-penalty enhanced activity in the left insular cortex, but not the right. The left insula, however, as well as the left dorsolateral prefrontal cortex and dorsomedial prefrontal cortex/dorsal anterior cingulate cortex, showed much greater responses for learning-penalty than for random-penalty. These findings suggest that learning-penalty plays a critical role in learning, unlike rewards or random-penalty, probably not only due to its evoking of aversive emotional responses, but also because of error-detection processing, either of which might lead to changes in planning or strategy.