• Title/Summary/Keyword: Antenna size-reduction

Search Result 96, Processing Time 0.032 seconds

An Intercell Interference Reduction Technique for OFDM-based Cellular Systems Using Virtual Multiple Antenna (OFDM 기반 셀룰러 시스템에서 가상 다중안테나를 이용한 셀간 간섭 감쇄 기법)

  • Lee Kyu-In;Ko Hyun-Soo;Ahn Jae-Young;Cho Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper, an intercell interference (ICI) reduction technique is proposed for OFDM-based cellular systems using the concept of virtual multiple antenna where multiple antenna techniques are performed on a set of subcarriers, not on the actual antenna array. The proposed technique is especially effective for user terminals with a single antenna at cell boundary in fully-loaded OFDM cellular systems with a frequency reuse factor equal to 1. Proposed ICI reduction techniques developed for SISO and MISO environments are shown to be robust to symbol timing offsets and efficient for various cell environments by adjusting group size depending on the number of adjacent cells. Also, the concept of a virtual signature randomizer (VSR) is introduced to improve channel separability in the virtual MIMO approach. It is shown by simulation that the proposed techniques are effective in reducing ICI and inter-sector interference compared with the conventional methods.

Compact & Contact DVB-H Antenna with Broad Dual-band operation for PMP Applications (광대역의 이중대역 동작을 위한 PMP용 소형/부착형 DVB-H 안테나)

  • Yeom, In-Su;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.891-895
    • /
    • 2010
  • A dual-band (UHF: 470-862 MHz, L: 1452-1492 MHz) digital video broadcasting-handheld (DVB-H) antenna is presented. The proposed antenna is composed of a planar inverted F-shape antenna (PIFA) with an input impedance matching circuit. The matching circuit improves antenna performance in the broad UHF bands (470-862 MHz: 63%). The proposed antenna has omni-directional patterns and sufficient gain (Ave. peak gain is about 1.70 dBi over 470-862 MHz) for the PMP applications. The antenna is contact with a PMP case (${\varepsilon}_r=3.2$) which is used as a substrate for the size reduction and compact design.

Miniaturization of UHF Planar Antenna Employing Slot-loading (Slot-loading에 의한 UHF 대역 평면 안테나의 소형화 설계)

  • Chun, Joong-Chang;Lee, Dong-Hyun;Kim, Tae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.685-688
    • /
    • 2008
  • Planar antennas are very efficient for the use of the out-door data transmission applications due to their low-profile characteristics. But the size of the antenna in UHF band blocks the practical usage. In this paper, a miniaturized planar antenna is investigated for the application of AMR system in UHF band. The designed antenna is fabricated in the form of the microstrip patch on the FR-4 substrate. The miniaturization is achieved by slot-loading on the patch. First, effects of simple slots on the size reduction are analyzed, followed by the design using more complex slots resulting in the reduction ratio of 37.9% in 425.6 MHz and bandwidth of 3.8 MHz. The effect of epoxy coating for the protection is also investigated.

  • PDF

Miniaturized Conically Stepped COBRA for High Power Electromagnetic Generator (고출력 전자기파 발생 장치용 소형화 된 원뿔 계단형 COBRA)

  • Ahn, Ji-Hwan;Lee, Sang-Heun;Yoon, Young-Joong;Kim, Jun-Yeon;Lee, Woo-Sang;So, Joon-Ho;Han, In-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.947-956
    • /
    • 2008
  • In this paper, miniaturized conically stepped COBRA is proposed. In order to prevent electrical breakdown, COBRA, which consists of hem and lens, has to get bigger if it is designed with conventional method. Because of the phase error increase, shortening the length of the antenna without changing the aperture size leads to the reduction of the antenna gain. To avoid this, the phase error at the aperture is compensated by transforming the COBRA lens into conically stepped form. The simulations result shows that the proposed antenna has higher gain than the conventional COBRA in spite of the size reduction from 1,300 mm to 600 mm. The fabricated and measured COBRA has the gain of 26.2 dBi.

Miniaturization of UHF Planar Antenna Employing Slot-loading (슬롯 장하에 의한 UHF 대역 평면 안테나의 소형화 설계)

  • Chun, Joong-Chang;Lee, Dong-Hyun;Kim, Tae-Soo;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.979-983
    • /
    • 2008
  • Planar antennas are very efficient for the use of the out-door data transmission applications due to their low-profile characteristics. But the size of the antenna in UHF band blocks the practical usage. In this paper, a miniaturized planar antenna is investigated for the application of AMR system in UHF band. The designed antenna is fabricated in the form of the microstrip patch on the FR-4 substrate. The miniaturization is achieved by slot-loading on the patch. First, effects of simple slots on the size reduction are analyzed, followed by the design using more complex slots resulting in the reduction ratio of 37.9% in 425.6 MHz and bandwidth of 3.8 MHz. The effort of epoxy coating for the protection is also investigated.

Miniaturization of Microstrip Antenna using Iris (Iris를 이용한 마이크로스트립 안테나의 소형화)

  • Seo Jeong-Sik;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.922-930
    • /
    • 2004
  • In this paper, the 3-dimensional microstrip antenna, where the lis is attached near the patch, on the pound and both patch and ground in zigzag, is designed and fabricated to miniaturize size of antenna. The path of surface current and permittivity in patch are increased because of attached Iris near the patch, on the pound and patch and found. In particula., the maximum size reduction effect among the three-type of $79.1\%$(17 mm$\times$90 mm) was presented in zigzag-type compared with the rectangular microstrip patch antenna(MPA) with a height of 9 mm at the resonant frequency of 1.575 GHz. The gain showed -1.15 dBd, -10 dB bandwidth showed 6.2$\%$(98 MHz), and HPBW of E-plane showed $154^{\circ}$. As that result we could confirm that the 3-dimensional structure with attached Irises is the proper form for the miniaturization of microstrip antenna.

Simple Miniaturization Method of a Microstrip Patch Antenna (마이크로스트립 패치 안테나의 효율적 소형화 기법)

  • 이병제;이호준;강기조;김남영;이종철;김종환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.920-928
    • /
    • 2000
  • In this paper, using newly proposed size reduction technique, the aperture coupled microstrip patch antenna for a repeater system in a mobile communication cellular band (824~849 MHz) is developed with a wide bandwidth, small size, light weight, and low cost. The resonant frequency of microstrip antennas is related to the electric field distribution of the radiating patch. The field strength of $TM_{01}$ mode of a rectangular patch antenna is strongest at each of the extremities of the radiating patch, but negligible at center. Therefore, the size of a patch antenna can be effectively minimized by inserting the narrow rectangular dielectric into just under the edges of the resonant Patch. This Paper also proposes the bandwidth improvement technique by using under-coupling technique with a tuning stub. The VSWR is less than 1.5 : 1 for the whole cellular band. The simulation tool was HFSS, Agilent Technologies, Inc.

  • PDF

Compact Folded Monopole Antenna Excited by a Conductor-Backed Coplanar Waveguide with Vias

  • Kim, Jin Hyuk;Hwang, Keum Cheol
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.534-537
    • /
    • 2013
  • A compact monopole antenna excited by a conductor-backed coplanar waveguide (CBCPW) is developed for wireless USB dongle applications. The proposed antenna has a compact dimension of $14mm{\times}47.4mm{\times}3.5mm$, which is suitable for a USB dongle housing. A slotted elliptical patch and a CBCPW with vertical vias are employed to achieve a further size reduction and an improved impedance bandwidth. The measurement result demonstrates that the fabricated antenna resonates from 2.25 GHz to 10.9 GHz, which covers all of the important wireless communication bands, including WiBro (2.3 GHz to 2.4 GHz), Bluetooth (2.4 GHz to 2.484 GHz), WiMAX (2.5 GHz to 2.7 GHz and 3.4 GHz to 3.6 GHz), satellite DMB (2.605 GHz to 2.655 GHz), 802.11b/g/a WLAN (2.4 GHz to 2.485 GHz and 5.15 GHz to 5.825 GHz), and ultra-wideband (3.1 GHz to 10.6 GHz) services. The radiation characteristics of the proposed antenna when attached to a laptop are tested to investigate the influence of the keypad and the LCD panel of the laptop.

Design of 900MHz Diagonal Slotted Type Microstrip Patch Antenna (900MHz 대각선 슬롯형 마이크로스트립 패치안테나 설계)

  • Park, Byeong-Ho;Park, Chan-Hong;Park, Sang-Joo;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.525-529
    • /
    • 2009
  • In this paper, microstrip patch antenna with diagonal slotted type using RFID is designed. This microstrip patch antenna is designed by considering the properties of critical parameter like the size, the truncating dimension, position of feed power and the height of airspace. the designed microstrip patch antenna has the lowest return loss in 915MHz, and in case of the voltage standing wave ratio(VSWR) is less than 1.2 under return loss -16dB, it has bandwidth of about 26MHz. Also, the microstrip patch antenna has the gain of 6dBi on the center frequency of 915MHz band and 2.8dB in the rate of reduction.

  • PDF

A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites

  • Ko, Kwang Hee;Ahn, Hyo-Sung;Wang, Semyung;Choi, Sujin;Jung, Okchul;Chung, Daewon;Park, Hyungjun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.622-630
    • /
    • 2016
  • In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to conventional methods currently used in practice.