• Title/Summary/Keyword: Antecedent condition

Search Result 70, Processing Time 0.025 seconds

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station (영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

Hydrological Review on the Fload Runoff ratio (홍수유출율에 관한 수문학적 고찰)

  • 이순혁;음성진;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.42-52
    • /
    • 1985
  • This study was attempted to derivate empirical formulas for the runoff: ratio during ilood. season at three watersheds of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle, and lower portion of Nam Han river basin, respectively. Obtained formulas for flood runoff ratio can be applied as an element for the estimation, peak discharge for the design of various hydraulics structures which can be concidented with meteorological and topographical condition. The obtained through this study were analyzed as follows. 1.It was found that the magnitude of runoff ratio depends on the amount of rainfall for all studying basins. 2.Empirical formulas 'for the runoff' ratio were derivated as 1- 2,707 Rt0.345, 1-1.691 Rt0.242 and 1-1.807 Rt0.227 at Dan Yang, Chung Ju and Yeo Ju watershed, respectively. 3.The magnitude of runoff ratio was appeared in the order of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle and lower portion of Nam Han rivet basin, respectively. 4.It was assumed that in general the more it rains, the lesser becomes the ratio of loss rainfall. Especially, the ratio of loss rainfall for Dan Yang, upper portion of river basin was shown as the lowest among three watersheds. Besides, the magnitude of that was appeared in the order of Chung Ju and Yeo Ju watershed located at middle, and lower part of river basin, respectively. 5.Relative and standard errors of runoff ratio calculated by empirical formulas were shown to be within ten percent to the observed runoff ratio in all watersheds. 6.It is urgently essential that the effect of antecedent rainfall have an influence on the next coming flood should be studied in near future.

  • PDF

Estimation of the Probability Flood Discharge for Small and Middle Watersheds (중소하천 유역에서의 확률홍수량 분석)

  • Yun, seong-jun;Yu, ui-geun;Kim, byeong-chan;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.442-448
    • /
    • 2009
  • Recently, the natural disaster has occurred as a heavy snow fall, drought and flood by abnormal weather. The damage of human and property by flood is most serious problem among those natural disaster. In order to prepare structural or non-structural measure, to estimate exact flood discharge is important element. This study analyze frequency of hour-unit rainfall data and estimate probability flood discharge by HEC-HMS as changing method of runoff analysis. Also, this study analyze the peak flood discharge sensibility according to Curve Number(CN) with the return period. As a result of estimation of probability flood discharge with the variety CN, to select Antecedent Moisture To select suitable condition(AMC) is important parameter because flood discharge is estimated 40% gap according to AMC.

  • PDF

Bullae-Forming Pulmonary Metastasis from Choriocarcinoma Presenting as Pneumothorax

  • Hyun, Kwanyong;Jeon, Hyeon Woo;Kim, Kyung Soo;Choi, Kook Bin;Park, Jae Kil;Park, Hyung Joo;Wang, Young Pil
    • Journal of Chest Surgery
    • /
    • v.48 no.6
    • /
    • pp.435-438
    • /
    • 2015
  • Gestational trophoblastic disease (GTD) is a condition of uncertain etiology, choriocarcioma, or placental-site hydatidiform moles, invasive moles, choriocarcinoma, and placental-site trophoblastic tumors. It arises from the abnormal proliferation of trophoblastic tissue and spreads beyond the uterus hematogenously. The early diagnosis of GTD is important to ensure timely and successful management and the preservation of fertility. We report the unusual case of a metastatic choriocarcinoma that formed bullae on the lung surface and presented as recurrent pneumothorax in a 38-year-old woman with elevated beta-human chorionic gonadotropin (hCG) levels. She underwent thoracoscopic wedge resection of the involved lung and four subsequent cycles of consolidation chemotherapy. No other evidence of metastatic disease or recurrent pneumothorax was noted during 22 months of follow-up. GTD should be considered in the differential diagnosis of spontaneous pneumothorax in reproductive-age women with an antecedent pregnancy and abnormal beta-hCG levels.

A Study on the Variation of the Critical Duration According to Hydrologic Characteristics in Urban Area (도시유역에서 수문학적 특성에 따른 임계지속기간의 변화 연구)

  • Lee, Jung-Sik;Shin, Chang-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.29-39
    • /
    • 2005
  • The objective of this study is to analyze the relation of critical duration according to hydrologic characteristics in urban areas. RRL, ILLUDAS, SWMM, and SMADA urban runoff models were applied to the Seongnae and Banpo watershed and experiment area of the Dong-Eui University. Also, hydrologic characteristics such as temporal pattern of rainfall, rainfall intensity formula, antecedent moisture condition, return period, and urban runoff model were used to simulate the critical duration of the test areas. The results of this study are as follows; (1) The type of temporal pattern of rainfall which causes maximum peak discharge in urban area has resulted in Huff's 4th quartile distribution. (2) The critical duration in urban areas were not influenced by hydrological factors except urban runoff model. (3) Peak discharge and critical duration in urban areas were influenced by the urban runoff model, and the SWMM model using Huff's 4th quartile distribution shows maximum critical duration.

Revised AMC for the Application of SCS Method: 1. Review of SCS Method and Problems in Its Application (SCS 방법 적용을 위한 선행토양함수조건의 재설정: 1. SCS 방법 검토 및 적용상 문제점)

  • Park, Cheong-Hoon;Yoo, Chul-Sang;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.955-962
    • /
    • 2005
  • Even though the runoff volume is very sensitive to the antecedent soil moisture condition (AMC), the general rainfall-runoff analysis in Korea has accepted, without careful consideration of its applicability, the AMC classification of the Soil Conservation Service (SCS, 1972). In this study, by following the development procedure of SCS Curve Number (CN), the rainfall-runoff characteristics of the Jangpyung subbasin of the Pyungchang River Basin were analyzed to estimate the CN and evaluate the AMC classification of currently being used. As results, CN(I), CN(II), and CN(III) were estimated to be 72.1, 79.3, and 76.7, respectively. Among them CN(II) was found to be similar to the other reports but the other two were totally different from those of theoretically estimated. However, it is difficult to evaluate the AMC with CN, rather the frequency of each AMC could be a better indicator for its validity. This study developed the histogram of AMC and compared the frequency of each AMC. hs results we found that the criterion for AMC-III should be increased, Hut that for AMC-I decreased.

Parameter Estimation of Vflo$^{TM}$ Distributed Rainfall-Runoff Model by Areal Average Rainfall Calculation Methods - For Dongchon Watershed of Geumho River - (유역 평균 강우량 산정방법에 따른 Vflo$^{TM}$ 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 -)

  • Kim, Si-Soo;Park, Jong-Yoon;Kim, Seong-Joon;Kim, Chi-Young;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.879-879
    • /
    • 2012
  • 강우현상의 공간적 변동성에 대한 해석은 수자원 계획 및 관리를 위해 중요한 관심사가 되고 있다. 일반적으로 우리가 얻을 수 있는 강우자료는 한 지점에 설치되어 있는 우량계에 의한 관측된 지점강우량자료이다. 기존의 집중형 수문모형이 유출과정의 공간적인 분포 및 변화를 유역단위로 평균화해서 취급하는 개념기반의 모형임에 반해서 분포형 수문모형은 유역을 수문학적으로 균일한 매개변수를 갖는 소유역 또는 격자망으로 구분하여 적용하는 것으로, 도시화 등 토지이용의 변화나 기타 유역내의 물리적인 특성의 변화가 수문과정에 미치는 영향을 잘 모의할 수 있다. 따라서 본 연구에서는 Vflo$^{TM}$ 분포형 강우-유출 모형과 IDW, Ordinary Kriging, Thiessen 등의 강우 분포 기법을 이용하여 낙동강 제 1지류인 금호강의 동촌 수위관측소 유역($1,544km^2$)을 출구로 하여 강우-유출모의를 하였다. 이를 위하여 강우-유출에 영향을 주는 매개변수를 선정하고 동촌 수위관측소의 실측 유량자료를 바탕으로 하여 IDW, Kriging, Thiessen 등의 면적강우량 산정방법별로 모형의 보정(2007, 2009) 및 검증(2010)을 실시하였다. 모의 된 유출량과 실측유량의 상관성은 결정계수 $R^2$에서 IDW 과 Kriging의 경우 0.95 ~ 0.99의 상관성을 나타냈으며 Thiessen 의 경우 0.94 ~ 0.99의 값을 나타냈다. Nash-Sutcliffe 모형효율은 IDW의 경우 0.95 ~ 0.98, Kriging의 경우 0.94 ~ 0.99를 나타냈으며 Thiessen의 경우는 0.90 ~ 0.98의 모형효율을 나타내었다. 이때 포화투수계수와 조도계수가 전체 유량과 첨두시간에 영향을 주었다. 호우사상을 선정하여 검보정을 실시 한 결과, 유역의 유출 모의를 수행하였을 때 선행강우량에 따라서 토양의 침투능에 영향을 많이 주고 있기 때문에, 선행 토양함수조건(Antecedent Moisture Condition: AMC)으로 분류한 뒤에 AMC 조건에 따라서 유출-모의를 수행하는 것이 타당하다고 판단된다.

  • PDF

The Analysis of the Distribution Characteristics of Green Water using TRMM and National Standard A1B Climate Change Scenario (TRMM과 국가표준 기후변화시나리오(A1B)를 활용한 토양수(Green Water) 분포특성 분석)

  • Han, Woo-Suk;Shim, Ou-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.92-92
    • /
    • 2011
  • 수자원장기종합계획(2006)에 따르면, 우리나라는 물부족이 예상이 되고 있고, 이러한 물부족 현상은 기후변화의 영향으로 더욱 악화될 것으로 예상된다. 기후변화에 따른 물부족에 대응하기 위해서는 현행 지표수 및 지하수(Blue Water) 위주의 수자원관리와 더불어 그전에는 수자원으로 인식되지 않았던 토양수(Green Water)를 새로운 개념의 수자원으로 인식하는 것이 필요하다. 토양수는 현재 물사용량 중에서 가장 많은 비중을 차지하는 농업용수 부분에 효율적으로 활용하면, 지표수나 지하수와 같은 수자원을 대체하는 효과가 있다. 기후변화에 따른 물부족에 대응한 토양수의 효율적 활용을 위해서는, 과거 뿐아니라 미래의 지역별 시기별 토양수 공간분포특성을 분석하는 것이 선행되어야 한다. 그러므로 본 연구에서는 토양수의 분석을 통한 미래 물부족 해결에 도움이 될 새로운 수자원 관리의 기틀을 마련하기 위해 토양수 분포특성분석모델을 개발하고, 이를 활용해 과거 및 미래의 토양수의 공간분포특성을 분석한다. 토양수 분포특성분석모델은 선행 5일간의 일 강우데이터 값을 표준선행강우지표(Normalized Antecedent Precipitation Index)에 적용하여 일 단위 토양수 상태(Wet, Average, Dry condition)를 계산하는 모델이다. 과거 토양수 분석에는 인공위성 강우데이터(Tropical Rainfall Measuring Mission 3B42)를, 미래 토양수 분석을 위해서는 기상청에서 제공하는 국가표준 기후변화 시나리오(A1B)를 각각 사용하여, 과거 데이터는 27km의 격자로, 미래는 25km 격자크기로 한반도 전체의 일 단위 토양수 상태를 계산했다. 계산된 토양수 결과를 활용해 연 월별 그리고 토양수를 쓸 수 있는 시기, 즉 식물이 자라는 시기(4-9월)의 특성을 분석했다. 이를 통해 향후 기후변화에 따른 물부족 대응 토양수 수자원 활용방안에 도움이 될 것으로 예상된다.

  • PDF

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management (효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석)

  • Kim, Heewon;Sin, Yeonju;Choi, Jungheon;Kang, Hyunwoo;Ryu, Jichul;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

Change of AMC due to Climatic Change (기후변화에 따른 선행토양함수조건(AMC)의 변화)

  • Yoo, Chulsang;Park, Cheong Hoon;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.233-240
    • /
    • 2006
  • One of the main factor that effects on the CN's value in SCS Curve Number method for the estimation of direct runoff is the antecedent soil moisture condition (AMC). It is also common to use the AMC-III in hydrologic practice, which provides the largest runoff as possible. In this paper, AMC defending on the rainfall characteristics is analyzed using daily rainfall data at rainy season (June~September) of the Seoul station from 1961 to 2002. The probability mass function of AMC is also investigated to analyze the variation of AMC based on climate change, scenarios from several General Circulation Model (GCM) predictions. As a results we can find that the occurrence of AMC-I is reduced, and AMC-III is increased, whereas AMC-II does not change.