• Title/Summary/Keyword: Antarctic Circumpolar Current

Search Result 10, Processing Time 0.027 seconds

Krill and Currents-Physical and Biological Interactions Influencing the Distribution of Euphausia superba

  • Nicol, Stephen
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.633-644
    • /
    • 2003
  • The distribution and abundance of Antarctic krill (Euphausia superba), particularly in the South Atlantic, has traditionally been viewed as primarily determined by the flow of the Antarctic Circumpolar Current. Krill are viewed as being particles on a conveyor belt that carries them around the Antarctic continent resulting in a single circumpolar population. The evidence to support this viewpoint is largely circumstantial and there is very little direct evidence available of krill being moved by the currents-krill flux. There is also considerable biological and physical evidence which suggests that other factors may play a dominant role in the life history and distribution of krill. This review examines the evidence fur krill flux and also examines evidence that does not accord with this theory. The management implications of assuming krill flux are outlined and some lines for future research are suggested.

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

Radiolarians from Core Sediments (A9-EB2) in Bransfield Basin, West Antarctica (서남극 브랜스필드 동부 분지내 코아 퇴적물(A9-EB2)의 방산충)

  • Bak, Young-Suk;Lee, Jong-Deock;Yun, Hye-Su;Yoon, Ho-Il;Kim, Hyang-Sook
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • A total of 58 species of radiolarians belonging to 41 genera were identified in 44 samples from core A9-EB2 of the Bransfield Basin in the Antarctic. The radiolarian assemblages from A9-EB2 are generally very low in abundance.The dominant species are Antarctissa denticulata, A. longa, A. strelkovi, Lithomelissa setosa, Lifhomitra lineata, Peridium longispinum and Phormacantha hystrix, constituting 75% of the total assemblage. Genera Challenge개n and Protocystis belonging to family Challeneriidae, found in core A9-EB2 have been recorded in the Quaternary sediments. Therefore, the geologic age of core A9-EB2 in Bransfield Basin is regarded to be Quternary (Pleistocene-Holocene). Typical circumpolar taxa such as Antarctissa strelkovi, A. denticulata, Cycladophora davisiana and Larcopyle buetschlii are representing the influence of waters from Bellingshausen Sea and Antarctic Circumpolar Current. Plectacantha oikiskos and Phomacantha hystrix are considered as a coastal indicator. Also, low amounts of Lithomelissa setosa are related to pelagic condition and entrance of cold waters from the Western Weddell Sea into Bransfield Basin. Therefore, the core sediments in Bransfield Basin were deposited under the coastal condition mainly influenced by the waters from Bellingshausen Sea and Antarctic Circumpolar Current. but also by the water from the Western Weddell Sea of the open-water condition.

  • PDF

Quaternary Diatom Assemblages from Sediment Core GC 98-06 in the Southern Drake Passage, Antarctica (드레이크 해협 남부 코어퇴적물에서 산출된 제 4기 규조 화석 연구)

  • Lee, Jong-Deock;Yoon, Ho-Il;Yun, Hye-su;Kim, Hyo-Jeong;Bak, Young-Suk
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2002
  • A total of 64 species belonging to 23 genera of diatom fossils are identified from the Core GC 98-06 in the southern Drake Passage, Antarctica. The diatom assemblages are dominated by Actinocyclus actinochilus, Coscinodiscus asteromphalus, Eucampia antarctica, Fragilariopsis kerguelensis, Thalassiosira lentiginosa, T. ritscheri and T. anguste-lineata, which are about 73% of the assemblage. Open water species are more abundant than sea ice species in the diatom assemblages of the core. Fragilariopsis. kerguelensis and Thalassiosira lentiginosa are valuable indicators of the habitats. Especially, F. kerguelensis represent the influence of waters from the Antarctic Circumpolar Current. Sea ice taxa represents the influence of cold waters from Bransfield Strait Water and melt water from the sea-ice at during warm periods. The reworked diatoms such as Denticulopsis dimopha (Miocene) and D. hustedtii (Pliocene) are occurred with Quaternary species (Actinocyclus actinochilus, Fragilariopsis kerguelensis, Thalassiosira lentiginosa, and T. glacilis). The presence of reworked diatoms indicates the transportation of the older diatoms into the Drake passage from the circumference sediments, due to strong bottom current activity of Antarctic circumpolar deep water.

Sea Level Valiability and Eddy in the South Indian Ocean by Multi-satellite Data (Topex/Poseidon, ERS1) (복합위성자료(Topex/Poseidon, ERS1)를 이용한 남인도양의 해수면 변화와 와동류 연구)

  • 윤홍주;서영상
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • Sea level variability and eddy in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean were studied during 1 year (October 15, 1992~October 15, 1993) using multi-satellite data (Topex/Poseidon, ERS1) produced by signal treatment. We found that sea level variabilities (>10cm) generally exist along the Antarctic Circumpolar Current in the area of 35$^{\circ}$~46$^{\circ}$S and strong sea level variabilities (20~30cm) were especially occurred from the effects of eddy due to bottom topography in two small area: 49$^{\circ}$~57$^{\circ}$E and 38$^{\circ}$~42$^{\circ}$S, and 58$^{\circ}$~64$^{\circ}$E and 42$^{\circ}$~44$^{\circ}$S.

Seasonal Variation of Global Volume Transport Calculated from an Ocean General Circulation Model

  • Jang, Chan-Joo;Noh, Yign;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2002
  • Seasonal variation in global transport calculated from an ocean general circulation model (OGCM) has been assessed through the comparison with observational estimates. The OGCM based on the GFDL MOM1.1 has honzontal grid interval of 10 and 21 verticle levels, and was integrated for 31 years forced by climatological wind stress, freshwater flux, and heat flux with restoring. General features of the world ocean circulation are well reproduced, which include the western boundary currents such as the Kuroshio and the Agulhas Current, the Equatorial Current system, the Antarctic Circumpolar Current, and the Weddell Sea gyres. Also well resolved is the remarkable seasonal variation in the depth-integrated flows in the northern Indian Ocean due to the monsoonal wind. Monthly variation is found to be dominant in the transport of the Antarctic Circumpolar Current through the Drake Passage in accordance with observational estimates. It has been shown that the mid-latitude depth-integrated flows obey the Sverdrup relation, except for some regions such as continental shelf regions where the interaction between stratification and bottom topography is critical.

Sea level Valiability and eddy in the South Indian Ocean by Multi-satellite data (Topex/Poseidon, ERS 1) (복수위성자료(Topex/Poseidon, ERS1)를 이용한 남인도양의 해수면 변화와 와동류 연구)

  • 윤홍주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.641-644
    • /
    • 2003
  • Sea level variability and eddy in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean were studied during 1 year(October 15, 1992~October 15, 1993) using multi-satellite data(Topex/Poseidon, ERSl) produced by signal treatement. We found that generally sea level variabilities(>10cm) exist along the Antarctic Circumpolar Current in the area of 35$^{\circ}$~46$^{\circ}$S and especially strong sea level variabilities(20~30cm) were occurred by the effects of eddy due to botton topography in two small area: 49$^{\circ}$-57$^{\circ}$E and 38$^{\circ}$~42$^{\circ}$S, and 58$^{\circ}$ -64$^{\circ}$E and 42$^{\circ}$-44$^{\circ}$S.

  • PDF

The Characteristics of Physical Oceanographic Environments and Bottom Currents in the KODOS Study Area of the Northeastern Tropical Pacific (동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Jeon, Dong-Chull;Kim, Ki-Hyune;Kwak, Chong-Heum;So, Seun-Seup
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.341-349
    • /
    • 2004
  • Hyrdography and deep currents were measured from 1997 to 1999 to investigate deep-sea environments in the KODOS (Korea Deep Ocean Study) area of the northeastern tropical Pacific. KODOS area is located meridionally from the North Equatorial Current to the boundary between the North Equatorial Current and the Equatorial Counter Current. Strong thermocline exists between 10 m and 120 m depths at the study area. Since that strong thermocline does hardly allow vertical mixing between surface and lower layer waters, vertical distributions of temperature, salinity, dissolved oxygen and nutrients drastically change near the thermocline. Salinity-minimum layer, which indicate the North Pacific Intermediate Water (NPIW) and the Antartic Intermediate Water (AAIW), vertically occupies vertically at the depths from 500 m down to 1400 m. The NPIW and the AAIW horizontally occur to the north and to the south of $7^{\circ}N$, respectively. The near-bottom water shows the physical characteristics of $1.05^{\circ}C$ and 34.70 psu at the depths of 10 m to 110 m above the bottom (approximately 4000-5000 m), which was originated from the Antarctic Circumpolar Water. It flows northeastwards for 2 to 4 months at the study area, and its mean velocity was 3.1-3.7 cm/s. Meanwhile, reverse (southwestward) currents appear for about 15 days with the average of 1.0-6.1 cm/s every 1 to 6 months. Dominant direction of the bottom currents obtained from the data for more than 6 months is northeastward with the average speeds of 1.7-2.1 cm/s. Therefore, it seems that deep waters from the Antarctica flow northwards passing through the KODOS area in the northeastern tropical Pacific.

Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5 (고해상도 기후예측시스템의 표층해류 예측성능 평가)

  • Lee, Hyomee;Chang, Pil-Hun;Kang, KiRyong;Kang, Hyun-Suk;Kim, Yoonjae
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.

Sediment Provenance using Clay Mineral in the Continental Shelf and Rise of the Eastern Bellingshausen Sea, Antarctica (벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구)

  • Park, Young Kyu;Jung, Jaewoo;Lee, Kee-Hwan;Lee, Minkyung;Kim, Sunghan;Yoo, Kyu-Cheul;Lee, Jaeil;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.173-184
    • /
    • 2019
  • Variations in grain size distribution and clay mineral assemblage are closely related to the sedimentary facies that reflect depositional conditions during the glacial and interglacial periods. Gravity cores BS17-GC15 and BS17-GC04 were collected from the continental shelf and rise in the eastern Bellingshausen Sea during a cruise of the ANA07D Cruise Expedition by the Korea Polar Research Institute in 2017. Core sediments in BS17-GC15 consisted of subglacial diamicton, gravelly muddy sand, and bioturbated diatom-bearing mud from the bottom to the top sediments. Core sediments in BS17-GC04 comprised silty mud with turbidites, brownish structureless mud, laminated mud, and brownish silty bioturbated diatom-bearing mud from the bottom to the top sediments. The clay mineral assemblages in the two core sediments mainly consisted of smectite, chlorite, illite, and kaolinite. The clay mineral contents in core GC15 showed a variation in illite from 28.4 % to 44.5 % in down-core changes. Smectite contents varied from 31.1 % in the glacial period to 20 % in the deglacial period and 25.1 % in the interglacial period. Chlorite and kaolinite contents decreased from 40.5 % in the glacial period to 30.3 % in the interglacial period. The high contents of illite and chlorite indicated a terrigenous detritus supply from the bedrocks of the Antarctic Peninsula. Core GC04 from the continental rise showed a decrease in the average smectite content from 47.2 % in the glacial period to 20.6 % in the interglacial period, while the illite contents increased from the 21.3 % to 43.2 % from the glacial to the interglacial period. The high smectite contents in core GC04 during the glacial period may be supplied from Peter I Island, which has a known smectite-rich sediment contributed by Antarctic Circumpolar Currents. Conversely, the decrease in smectite and increase in chlorite and illite contents during the interglacial period was likely caused by a higher supply of chlorite- and illite-enriched sediment from the eastern Bellingshausen Sea shelf by the southwestward flowing contour current.