• 제목/요약/키워드: Antagonistic microorganism

검색결과 51건 처리시간 0.027초

오이의 온실재배에서 발생하는 위조병의 미생물학적 제어 (Biological Control of Fusarium Wilt by Antagonistic Microorganism in Greenhouse Grown Cucumber Plants)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제12권1호
    • /
    • pp.101-114
    • /
    • 2004
  • This study was carried out to clarify the effects of antagonistic microorganism, Bacillus sp. JC181 isolated from the greenhouse soil grown cucumber plants on the growth inhibition of plant pathogen, fusarium wilt (Fusarium oxysporum) occurred in cucumber plants in greenhouse. Antagonistic bacterial strains were isolated and were investigated into the antifungal activity of the antagonistic microorganism against fusarium wilt. Screened fourteen bacterial strains which strongly inhibited F. oxysporum were isolated from thc greenhouse soil grown cucumber plants, and the best antagonistic bacterial strain designated as JC181, was finally selected. Antagonistic bacterial strain JC181 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. JC181 showed 58.2% of antifungal activity against the plant pathogen growth of F. oxysporum. By the bacterialization of culture broth and heated filtrates of culture broth, Bacterial strain, Bacillus sp. JC181. showed 91.2% and 260% of antifungal activity against F. oxysporum, respectivrly.

  • PDF

온실재배 토마토에서 발생하는 위조병의 미생물학적 제어 (Biological Control of Fusarium Wilt of Tomato Plants by Antagonistic Microorganism in Greenhouse)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제11권4호
    • /
    • pp.61-74
    • /
    • 2003
  • This study was conducted to screen the antagonistic bacteria which inhibit the growth of plant pathogen, fusarium wilt(Fusarium oxysporum) occurred in tomato plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it’s identification. Ten bacterial strains which strongly inhibited Fusarium oxysporum were isolated from the nature, and the best antagonistic bacterial strain designated as KC175, was selected. The antagonistic strain KC175 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. The Bacillus sp. KC175 showed 58.2% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the culture broth and the heat bacterialization culture filtrate of it, Bacillus sp. KC175 showed 91% and 18% of antifungal activity, respectively.

  • PDF

카네이션의 시설재배에서 길항성 세균을 이용한 Fusarium Wilt 의 생물학적 방제 (Biological Control of Fusarium Wilt of Carnation Plants by Antagonistic Microorganism in Greenhouse)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제12권2호
    • /
    • pp.183-196
    • /
    • 2004
  • This study was carried out to screen and select the effects of antifungal bacterial strains which inhibit the growth of plant pathogen, Fusarium oxysporum(fusarium wilt) occurred in carnation plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it's identification. Twenty bacterial strains which strongly inhibited Fusarium oxysporum were isolated from roots of carnation plants and the soil in greenhouse, and the best antifungal bacteria designated as C121, was finally selected. Antagonistic bacterial strain, C121 was identified to be the genus Bacillus sp. based on the morphological, biochemical and cultural characterizations. The Bacillus sp. C121 showed 58.1% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the cultural broth and the heat bacterialization culture filtrate of it, Bacillus sp. C121 was shown 92.1% and 21.0% of antifungal activity, respectively.

  • PDF

길항성 근원 세균이 딸기 시설재배에서 발생하는 잿빛곰팡이병의 생물학적 제어에 미치는 영향 (Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants)

  • 조정일;조자용;양승렬
    • 한국유기농업학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2005
  • This study was carried out to clarify the effects of antifungal bacterial strains isolated from the greenhouse soil grown strawberry plants on the growth inhibition of plant pathogen, gray mold (Botrytis cinerea) infected in strawberry plants in Damyang and Jangheung districts. Antagonistic bacterial strains were isolated and investigated into the antagonistic activity against gray mold. Screened ten bacterial strains which strongly inhibited Botrytis cinerea were isolated from the greenhouse grown strawberry plants, and the best antifungal microorganism designated as SB 143 was finally selected. Antifungal bacterial strain SB 143 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. SB 143 showed 59.4% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. SB 143 showed 93.1% and 32.1% of antagonistic activity against Botrytis cinerea.

  • PDF

파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성 (Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens)

  • 양수정;김형무;주호종
    • 한국유기농업학회지
    • /
    • 제23권1호
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

연자성 세라믹 분말이 길항미생물의 생장과 저온 활성에 미치는 영향 (Effect of Soft Ferrite Ceramic Powders on the Growth and Viability at Low Temperature of Antagonistic Microorganisms)

  • 선흥석;박찬영
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.85-90
    • /
    • 1999
  • The possibility of employment of ceramics, known to be emitting far infrared waves, to keep the growth and the viability of the antagonistic microorganisms was examined. Among four kinds of commercial ceramics, the ceramic powders composed of soft ferrite as a main component has exhibited to grow Pseudomonas cepacia and Saccharomyces cerevisiae better. The ceramic powder in the growth medium has increased the number of cells of P. cepada about ten times and that of S. cerevisiae two to five times more than that in the control at $27^{\circ}C$. The viability of the microorganism at low temperature which was measured from the regrowth behavior at $27^{\circ}C$ after five days store at $4^{\circ}C$ has shown that the lag time of the two microorganisms reduced about three hours without any defect in the rate of logarithmic growth. These results demonstrated that the ceramic powders was available to the growth and viability at low temperature of antagonistic microorganisms.

  • PDF

유용미생물의 시용이 잔디의 질과 이용성에 미치는 영향 (The use of beneficial microorganisms to improve turfgrass quality and usability)

  • 황연성;최준수
    • 아시안잔디학회지
    • /
    • 제13권4호
    • /
    • pp.201-212
    • /
    • 1999
  • In use of pesticides in golf courses has been increased steadily. Environmental concern as well as decrease in efficiency led the turfgrass management into an alternate approach of using beneficial microorganism to deal with turfgrass pests. This study was focused on the use of such microorganisms for improving cultural environment and minimizing the use of pesticides. Microorganisms antagonistic to turfgrass diseases were applied to zoysiagrass fairways and creeping bentgrass greens in Yusung country club. Tharch accumulation, disease occurrence, and other cultural environments were compared among the combinations of microorganisms and suppliemental N applications. The application of microorganisms antagonistic to turfgrass diseases improved turf resiliency. Thatch thickness was 3.03cm in the control plot but it was 2.11cm in plots treated by microorganisms, indicating significant effects of microorganism application on reduction of thatch accumulation. Number of microorganism that can decompose of cellulose was higher at the plots treated with useful microbial products and it was considered that existence of higher population of microorganisms resulted in reduction of thatch accumulation. In the evaluation of relationship between thatch accumulation and disease occurrence, greater thatch accumulation was observed at the golf courses which have been frequently infested by large patch. However, the rate of thatch accumulation varied among surveyed golf courses regardless of the year of turf establishment. Therefore, management practice which can be effective for reduction of thatch could result in large patch suppression. The application of microorganisms on the established turfgrasses reduced the occurrence rate of pythium blight and yellow path diseases, whereas occurrence of brown patch and dollar spot increased.

사과 부란변 방제를 위한 길항미생물 분리 및 동정 (Isolation and Identification of Antagonistic Microorganisms for Biological Control to Apple Tree Diseases, Canker(Valsa ceratosperma))

  • 박흥섭;조정일
    • 한국유기농업학회지
    • /
    • 제6권1호
    • /
    • pp.35-43
    • /
    • 1997
  • For the purpose of acquiring microbial agents that can be utilized to billogically control the major airborne disease to apple trees, such as canker(Valsa ceratosperma), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogen causing major disease to apple trees and identifed. Screening of more than 3, 000 species of microorganisms collected in nature for them antagonistic action to the pathogen, Valsa ceratosperma causing disease to apple tree resulted in selection of effective species. Out of the 11 species, one species designated as CAP141 demonstrated outstanding activity. The bacterial strain, CAP141 exerted antagonistic efficiency of 65% on Valsa ceratosperma. The CAP141 was identified as a bacterial strain to Bacillus subtilis based on morphology, culture conditions, and physio-biochemical characteristics.

  • PDF

가금티브스균 Salmonella gallinarum의 생육을 저해하는 길항미생물의 선발 및 동정 (Isolation, Identification and Cultural Condition of the Antagonistic Microorganism Against Salmonella gallinarum Causing Fowl Typhoid)

  • 김진락;김상달
    • 생명과학회지
    • /
    • 제13권6호
    • /
    • pp.843-848
    • /
    • 2003
  • 가금티프스는 가금류에 Salmonella gallinarum이 원인균이 되어 발병하는 양계산업에 막대한 지장을 주는 질병이다. 가금티프스를 억제하기 위한 생균제 개발을 위한 목적으로써 가금티프스 원인균인 Salmonella gallinarum의 생육을 저해시킬 수 있는 길항균주를 토종닭의 내장으로부터 분리하여 생육특성과 길항물질 생산성을 조사하고, 이 균주를 분류학적으로 동정하였다. 분리된 길항균주는 Bacillus amyloliquefaciens와 98% 상동성을 나타내어 최종적으로 Bacillus amyloliquefaciens Y3로 명명하였다. 0.3% maltose, 0.2% $NH_4Cl,\; 37^{\circ}C$ pH 7에서 균생육 및 길항물질의 생산능이 가장 우수하였으나 장내 담즙에 대한 내성은 크게 나쁘지 않을 것으로 확인되어졌다. 생산된 길항물질을 추정하여 본 결과 분자량이 10,000보다 작은 저분자물질이었으며 $80^{\circ}C$에서 20분간 열처리한 후에도 80%의 활성을 유지하는 내열성 물질임을 확인할 수 있었다. 향후 선발되어진 Bacillus amyloliquefaciens Y3가 생산해내는 길항물질에 대한 연구와 개량을 통하고 장내 정착성 실험을 거쳐 우수균주로 확인되면 양계산업에 사용될 우수한 생균제로 개발이 가능할 것이라 생각된다.