• 제목/요약/키워드: Ant algorithm

검색결과 156건 처리시간 0.029초

A Stigmergy-and-Neighborhood Based Ant Algorithm for Clustering Data

  • Lee, Hee-Sang;Shim, Gyu-Seok
    • Management Science and Financial Engineering
    • /
    • 제15권1호
    • /
    • pp.81-96
    • /
    • 2009
  • Data mining, specially clustering is one of exciting research areas for ant based algorithms. Ant clustering algorithm, however, has many difficulties for resolving practical situations in clustering. We propose a new grid-based ant colony algorithm for clustering of data. The previous ant based clustering algorithms usually tried to find the clusters during picking up or dropping down process of the items of ants using some stigmergy information. In our ant clustering algorithm we try to make the ants reflect neighborhood information within the storage nests. We use two ant classes, search ants and labor ants. In the initial step of the proposed algorithm, the search ants try to guide the characteristics of the storage nests. Then the labor ants try to classify the items using the guide in-formation that has set by the search ants and the stigmergy information that has set by other labor ants. In this procedure the clustering decision of ants is quickly guided and keeping out of from the stagnated process. We experimented and compared our algorithm with other known algorithms for the known and statistically-made data. From these experiments we prove that the suggested ant mining algorithm found the clusters quickly and effectively comparing with a known ant clustering algorithm.

순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선 (Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem)

  • 장주영;김민제;이종환
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

네트워크 프로세서에 적합한 개선된 AntNet기반 라우팅 최적화기법 (Optimized AntNet-Based Routing for Network Processors)

  • 박현태;배성일;안진호;강성호
    • 대한전자공학회논문지TC
    • /
    • 제42권5호
    • /
    • pp.29-38
    • /
    • 2005
  • 본 논문은 생태계 군집 시스템을 네트워크 기술에 응용한 적응형 라우팅 알고리즘인 AntNet을 기존의 상용 네트워크 프로세서 기반에서 최적화할 수 있도록 개선된 알고리즘을 제안하는 연구이다. 현재 사용되고 있는 네트워크 프로세서는 단순한 패킷 프로세싱만을 위해 설계되어 AntNet과 같은 복잡한 연산이 필요한 적응형 라우팅 알고리즘을 구현하는데 많은 문제점을 가지고 있다. 이를 분석하고 해결하기 위해 AntNet의 강화인자를 연산하는 부분을 중심으로 적응 성능은 유지하면서도 효율적으로 연산실행시간을 줄일 수 있는 개선된 AntNet알고리즘을 제안하였다. 이를 시뮬레이션을 통해 비교분석함으로서 제안한 개선된 AntNet알고리즘의 효용성을 검증한다.

그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구 (A Effective Ant Colony Algorithm applied to the Graph Coloring Problem)

  • 안상혁;이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.221-226
    • /
    • 2004
  • 개미 집단 시스템(Ant Colony System ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 새로운 메타 휴리스틱 방법이다. 이것은 그리디 탐색뿐만 아니라 긍정적 피드백에 의한 탐색을 이용한 모집단에 근거한 접근법으로 조합 최적화 문제를 해결하기 위해 제안되었다. 최근까지 인접한 노드($v_i, v_j$)가 같은 색을 갖지 않도록 그래프 G의 노드 V에 색을 배정하는 문제인 그래프 착색 문제의 최적 해를 구하기 위하여 다양한 접근 방식들과 해법들이 제안되고 있다. 본 논문에서는 기존의 그래프 착색 문제의 해법으로 잘 알려진 그리디 알고리즘, 시뮬레이티드어넬링, 타부 탐색 등이 아닌 개미 집단 시스템 알고리즘으로 해법을 구하는 방법인 ANTCOL 알고리즘을 소개하고, ANTCOL을 해결하기 위해 제안된 기존의 생성 함수들(ANT_Random ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF)과, 본 논문에서 새롭게 제안된 방법으로 RLF에 무작위 기법을 적용한 XRLF를 생성 함수로 사용한 ANT_XRLF 방법과 ANT_XRLF에 재검색을 추가한 방법(ANT_XRLF_R)의 그래프 착색 결과 및 실행 시간을 비교, 분석하여 제안된 방법이 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.

개미 시스템을 이용한 무선 센서 네트워크 라우팅 알고리즘 개발 (Ant-based Routing in Wireless Sensor Networks)

  • 옥창수
    • 한국경영과학회지
    • /
    • 제35권2호
    • /
    • pp.53-69
    • /
    • 2010
  • This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.

Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구 (An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem)

  • 정태웅;이승관;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF

네트워크 라우팅을 위한 개선된 AntNet 알고리즘 (Modified AntNet Algorithm for Network Routing)

  • 강득희;이말례
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권5호
    • /
    • pp.396-400
    • /
    • 2009
  • 다량의 데이터를 전송할 때, 시간 단축과 효율적인 트래픽관리를 위해 네트워크의 라우팅 선택 방법이 사용되고 있다. Ant 알고리듬을 적용한 AntNet은 라우팅 선택 확률이 동일할 때, 랜던선택을 한다. 그로인해서 불필요한 가중치가 발생하여 트래픽이 증가한다. 본 논문은 이를 해결하기 위해 GA 알고리듬을 AntNet에 적합하여 데이터 전송을 위한 전송시간 감소와 효율적인 트래픽 분산을 해결하였다. 제안한 알고리즘 성능평가를 위해서 본 논문에서는 대량의 데이터를 전송하기 위한 경로를 설정하고, 전송시간과 전송 오류율을 평가하여 우수성을 보였다.

패킷 방식 네트워크상의 적응적 경로 선정을 위한 군집체 특성 적용 하드웨어 구현 (Hardware Implementation of Social Insect Behavior for Adaptive Routing in Packet Switched Networks)

  • 안진호;오재석;강성호
    • 대한전자공학회논문지SD
    • /
    • 제41권3호
    • /
    • pp.71-82
    • /
    • 2004
  • 생태계의 군집 특성을 네트워크 환경에 적용하여 급변하는 환경에 대한 자가 적응 및 생존 특성을 부여하는 연구가 최근 많은 주목을 받고 있다. 그 중 AntNet은 개미를 모델링한 모바일 에이젼트를 사용하여 최적의 네트워크 경로를 선택하는 적응적 라우팅 알고리즘이다. 본 논문에서는 SoC 시스템에 적용 가능한 AntNet 기반 하드웨어 구조를 제안한다. 제안된 구조는 기존 알고리즘 수준의 AntNet을 하드웨어 레벨로 근사화 하여 설계되었으며, 기존 AntNet과 가상 네트워크 구조에서의 비교를 통하여 그 타당성을 검증하였다. 그리고 RTL 수준의 설계 및 합성 결과를 통하여 제안된 하드웨어 구조가 AntNet 기반 라우팅 구현에 효과적임을 확인할 수 있었다.

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구 (A Study of Ant Colony System Design for Multicast Routing)

  • 이성근;한치근
    • 정보처리학회논문지A
    • /
    • 제10A권4호
    • /
    • pp.369-374
    • /
    • 2003
  • 조합 최적화 문제를 풀기 위한 개미 알고리즘(Ant Algorithm)은 실제 개미 집단의 행동을 모방하여 만들어진 것이다. Ant Colony System(ACS)은 여러 유형의 개미 알고리즘 중 비교적 최근에 소개된 것이다. ACS의 설계를 위해 순회 외판원 문제(Traveling Salesman Problem, TSP)를 사용하여 실험을 수행하였다. ACS를 다양한 조합 최적화 문제에 적용할 때 순회 외판원 문제에 사용된 ACS의 파라미터와 전략을 사용하고 있다. 본 논문에서는 조합 최적화 문제들 중 하나인 멀티캐스팅 라우팅 문제를 해결하기 위해 ACS를 이용하였다. 멀티캐스트 라우팅은 데이터를 하나의 송신자에서 여러 수신자들로 보내기 때문에 모든 노드를 포함하는 순회 외판원 문제와는 속성이 다르고, 송신자에서 각 수신자에 하나의 최단경로를 설정하는 문제와도 다른 속성을 지니고 있다. 본 논문에서는 멀티캐스트 라우팅에 ACS를 적용하기 위해 알고리즘의 동작을 수정하고, 수정한 ACS의 성능을 향상시키기 위한 최적의 전략과 파라미터를 설계한다.