Data mining, specially clustering is one of exciting research areas for ant based algorithms. Ant clustering algorithm, however, has many difficulties for resolving practical situations in clustering. We propose a new grid-based ant colony algorithm for clustering of data. The previous ant based clustering algorithms usually tried to find the clusters during picking up or dropping down process of the items of ants using some stigmergy information. In our ant clustering algorithm we try to make the ants reflect neighborhood information within the storage nests. We use two ant classes, search ants and labor ants. In the initial step of the proposed algorithm, the search ants try to guide the characteristics of the storage nests. Then the labor ants try to classify the items using the guide in-formation that has set by the search ants and the stigmergy information that has set by other labor ants. In this procedure the clustering decision of ants is quickly guided and keeping out of from the stagnated process. We experimented and compared our algorithm with other known algorithms for the known and statistically-made data. From these experiments we prove that the suggested ant mining algorithm found the clusters quickly and effectively comparing with a known ant clustering algorithm.
It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.
본 논문은 생태계 군집 시스템을 네트워크 기술에 응용한 적응형 라우팅 알고리즘인 AntNet을 기존의 상용 네트워크 프로세서 기반에서 최적화할 수 있도록 개선된 알고리즘을 제안하는 연구이다. 현재 사용되고 있는 네트워크 프로세서는 단순한 패킷 프로세싱만을 위해 설계되어 AntNet과 같은 복잡한 연산이 필요한 적응형 라우팅 알고리즘을 구현하는데 많은 문제점을 가지고 있다. 이를 분석하고 해결하기 위해 AntNet의 강화인자를 연산하는 부분을 중심으로 적응 성능은 유지하면서도 효율적으로 연산실행시간을 줄일 수 있는 개선된 AntNet알고리즘을 제안하였다. 이를 시뮬레이션을 통해 비교분석함으로서 제안한 개선된 AntNet알고리즘의 효용성을 검증한다.
개미 집단 시스템(Ant Colony System ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 새로운 메타 휴리스틱 방법이다. 이것은 그리디 탐색뿐만 아니라 긍정적 피드백에 의한 탐색을 이용한 모집단에 근거한 접근법으로 조합 최적화 문제를 해결하기 위해 제안되었다. 최근까지 인접한 노드($v_i, v_j$)가 같은 색을 갖지 않도록 그래프 G의 노드 V에 색을 배정하는 문제인 그래프 착색 문제의 최적 해를 구하기 위하여 다양한 접근 방식들과 해법들이 제안되고 있다. 본 논문에서는 기존의 그래프 착색 문제의 해법으로 잘 알려진 그리디 알고리즘, 시뮬레이티드어넬링, 타부 탐색 등이 아닌 개미 집단 시스템 알고리즘으로 해법을 구하는 방법인 ANTCOL 알고리즘을 소개하고, ANTCOL을 해결하기 위해 제안된 기존의 생성 함수들(ANT_Random ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF)과, 본 논문에서 새롭게 제안된 방법으로 RLF에 무작위 기법을 적용한 XRLF를 생성 함수로 사용한 ANT_XRLF 방법과 ANT_XRLF에 재검색을 추가한 방법(ANT_XRLF_R)의 그래프 착색 결과 및 실행 시간을 비교, 분석하여 제안된 방법이 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.
This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.
조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.
다량의 데이터를 전송할 때, 시간 단축과 효율적인 트래픽관리를 위해 네트워크의 라우팅 선택 방법이 사용되고 있다. Ant 알고리듬을 적용한 AntNet은 라우팅 선택 확률이 동일할 때, 랜던선택을 한다. 그로인해서 불필요한 가중치가 발생하여 트래픽이 증가한다. 본 논문은 이를 해결하기 위해 GA 알고리듬을 AntNet에 적합하여 데이터 전송을 위한 전송시간 감소와 효율적인 트래픽 분산을 해결하였다. 제안한 알고리즘 성능평가를 위해서 본 논문에서는 대량의 데이터를 전송하기 위한 경로를 설정하고, 전송시간과 전송 오류율을 평가하여 우수성을 보였다.
생태계의 군집 특성을 네트워크 환경에 적용하여 급변하는 환경에 대한 자가 적응 및 생존 특성을 부여하는 연구가 최근 많은 주목을 받고 있다. 그 중 AntNet은 개미를 모델링한 모바일 에이젼트를 사용하여 최적의 네트워크 경로를 선택하는 적응적 라우팅 알고리즘이다. 본 논문에서는 SoC 시스템에 적용 가능한 AntNet 기반 하드웨어 구조를 제안한다. 제안된 구조는 기존 알고리즘 수준의 AntNet을 하드웨어 레벨로 근사화 하여 설계되었으며, 기존 AntNet과 가상 네트워크 구조에서의 비교를 통하여 그 타당성을 검증하였다. 그리고 RTL 수준의 설계 및 합성 결과를 통하여 제안된 하드웨어 구조가 AntNet 기반 라우팅 구현에 효과적임을 확인할 수 있었다.
The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.
조합 최적화 문제를 풀기 위한 개미 알고리즘(Ant Algorithm)은 실제 개미 집단의 행동을 모방하여 만들어진 것이다. Ant Colony System(ACS)은 여러 유형의 개미 알고리즘 중 비교적 최근에 소개된 것이다. ACS의 설계를 위해 순회 외판원 문제(Traveling Salesman Problem, TSP)를 사용하여 실험을 수행하였다. ACS를 다양한 조합 최적화 문제에 적용할 때 순회 외판원 문제에 사용된 ACS의 파라미터와 전략을 사용하고 있다. 본 논문에서는 조합 최적화 문제들 중 하나인 멀티캐스팅 라우팅 문제를 해결하기 위해 ACS를 이용하였다. 멀티캐스트 라우팅은 데이터를 하나의 송신자에서 여러 수신자들로 보내기 때문에 모든 노드를 포함하는 순회 외판원 문제와는 속성이 다르고, 송신자에서 각 수신자에 하나의 최단경로를 설정하는 문제와도 다른 속성을 지니고 있다. 본 논문에서는 멀티캐스트 라우팅에 ACS를 적용하기 위해 알고리즘의 동작을 수정하고, 수정한 ACS의 성능을 향상시키기 위한 최적의 전략과 파라미터를 설계한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.