• 제목/요약/키워드: Ant Colony Optimization : ACO

검색결과 78건 처리시간 0.023초

RRT*를 활용하여 향상된 이종의 개미군집 기반 경로 계획 알고리즘 (Improved Heterogeneous-Ants-Based Path Planner using RRT*)

  • 이준우
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.285-292
    • /
    • 2019
  • Path planning is an important problem to solve in robotics and there has been many related studies so far. In the previous research, we proposed the Heterogeneous-Ants-Based Path Planner (HAB-PP) for the global path planning of mobile robots. The conventional path planners using grid map had discrete state transitions that constrain the only movement of an agent to multiples of 45 degrees. The HAB-PP provided the smoother path using the heterogeneous ants unlike the conventional path planners based on Ant Colony Optimization (ACO) algorithm. The planner, however, has the problem that the optimization of the path once found is fast but it takes a lot of time to find the first path to the goal point. Also, the HAB-PP often falls into a local optimum solution. To solve these problems, this paper proposes an improved ant-inspired path planner using the Rapidly-exploring Random Tree-star ($RRT^*$). The key ideas are to use $RRT^*$ as the characteristic of another heterogeneous ant and to share the information for the found path through the pheromone field. The comparative simulations with several scenarios verify the performance of the improved HAB-PP.

중소 제조기업을 위한 엑셀기반 스케쥴링 시스템 (An Excel-Based Scheduling System for a Small and Medium Sized Manufacturing Factory)

  • 이창수;최경일;송영효
    • 품질경영학회지
    • /
    • 제36권2호
    • /
    • pp.28-35
    • /
    • 2008
  • This study deals with an Excel-based scheduling system for a small and medium sized manufacturing factory without sufficient capability for managing full-scale information systems. The factory has the bottleneck with identical machines and unique batching characteristics. The scheduling problem is formulated as a variation of the parallel-machine scheduling system. It can be solved by a two-phase method: the first phase with an ant colony optimization (ACO) heuristic for order grouping and the second phase with a mixed integer programming (MIP) algorithm for scheduling groups on machines.

A Hybrid Routing Protocol Based on Bio-Inspired Methods in a Mobile Ad Hoc Network

  • Alattas, Khalid A
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.207-213
    • /
    • 2021
  • Networks in Mobile ad hoc contain distribution and do not have a predefined structure which practically means that network modes can play the role of being clients or servers. The routing protocols used in mobile Ad-hoc networks (MANETs) are characterized by limited bandwidth, mobility, limited power supply, and routing protocols. Hybrid routing protocols solve the delay problem of reactive routing protocols and the routing overhead of proactive routing protocols. The Ant Colony Optimization (ACO) algorithm is used to solve other real-life problems such as the travelling salesman problem, capacity planning, and the vehicle routing challenge. Bio-inspired methods have probed lethal in helping to solve the problem domains in these networks. Hybrid routing protocols combine the distance vector routing protocol (DVRP) and the link-state routing protocol (LSRP) to solve the routing problem.

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

최단경로 탐색을 위한 ACO 알고리즘의 비교 분석 (Analysis on ACO Algorithm for Searching Shortest Path)

  • 최경미;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.1354-1356
    • /
    • 2012
  • 최근 ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 급증하면서 경로탐색의 중요성이 더욱 가속화되고 있다. 현재 차량용 내비게이션은 멀티미디어 및 정보통신 기술의 결합과 함께 다양한 기능 및 정보를 사용자에게 제공하고 있으며 이러한 기능과 정보를 사용해서 목적지점까지의 최단경로를 탐색하는 것이 내비게이션 시스템의 핵심기능이다. 이러한 경로탐색 알고리즘은 교통시스템, 통신 네트워크, 운송 시스템은 물론 이동 로봇의 경로 설정 등 다양한 분야에 사용되고 있다. 개미 집단 최적화(Ant Colony Optimization, ACO) 알고리즘은 메타 휴리스틱 탐색 방법으로 그리디 탐색(Greedy Search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순환 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 개미 집단 최적화(ACO) 알고리즘이 기존의 경로 탐색 알고리즘으로 알려진 Dijkstra 보다 최단경로 탐색에 있어서 더 적합한 알고리즘이라는 것을 설명하고자 한다.

돌연변이 개미 군집화 알고리즘을 이용한 스마트 물류 창고의 다중 주문 처리 시스템 (Muti-Order Processing System for Smart Warehouse Using Mutant Ant Colony Optimization)

  • 김창현;김근태;김여진;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.36-40
    • /
    • 2023
  • Recently, in the problem of multi-order processing in logistics warehouses, multi-pickup systems are changing from the form in which workers walk around the warehouse to the form in which goods come to workers. These changes are shortening the time to process multiple orders and increasing production. This study considered the sequence problem of which warehouse the items to be loaded on each truck come first and which items to be loaded first when loading multiple pallet-unit goods on multiple trucks in an industrial smart logistics automation warehouse. To solve this problem efficiently, we use the mutant algorithm, which combines the GA algorithm and ACO algorithm, and compare with original system.

  • PDF

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

무선 센서 네트워크에서의 에너지 효율적인 기반의 ACO 라우팅 알고리즘 설계 (Design of An Energy-efficient Routing Algorithm based on ACO for Wireless Sensor Networks)

  • 최재원;정의현;박용진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (D)
    • /
    • pp.621-624
    • /
    • 2006
  • 무선 센서 네트워크는 기존의 무선 통신 기술로는 구현 불가능했던 다양한 응용 기술의 실현을 가능케 할 것으로 기대되고 있다. 이를 위해 제한된 자원의 효율적인 사용을 통한 무선 센서 네트워크의 성능 향상에 대한 연구가 지속되고 있으며 네트워크 계층에 있어서는 에너지 효율적인 라우팅 알고리즘에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 데이터 중심(data-centric) 멀티 홉(multi-hop) 평면 라우팅 알고리즘에 최적화 알고리즘의 하나인 Ant Colony Optimization을 적용한 에너지 효율적인 라우팅 알고리즘을 제안한다. 시뮬레이션 결과, 제안한 알고리즘은 기존의 알고리즘에 비해 데이터 전송 지연 시간을 줄였을 뿐만 아니라, 경로 선택 및 유지에 필요한 제어 메시지 최소화를 통해 에너지 소모를 줄여 데이터 전송량의 증가를 가능케 했다.

  • PDF