• 제목/요약/키워드: Anorganic bovine xenograft

검색결과 5건 처리시간 0.021초

Bovine-derived Xenograft가 치주 골내낭 치유에 미치는 영향 (Periodontal Repair on Intrabony Defects treated with Anorganic Bovine-derived Xeonograft)

  • 김영택;채경준;정의원;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권3호
    • /
    • pp.489-496
    • /
    • 2007
  • The ultimate goal of periodontal treatment is to regenerate the lost periodontal apparatus. Many studies were performed in developing an ideal bone substitute. Anorganic bovine-derived xenograft is one of the bone substitute, which were studied and have been shown successful for decades. The aim of this study is to evaluate the effect anorganic bovine-derived xenograft. Total of 20 patients, with 10 patients receiving only modified widman flap, and the other 10 receiving anorganic bovine-derived xenograft and flap surgery, were included in the study. Clinical parameters were recorded before surgery and after 6 months. The results are as follows: 1. The test group treated with anorganic bovine-derived xenograft showed reduction in periodontal pocket depth and clinical attachment level with statistically significance(p<0.001) after 6 months. The control group treated with only modified Widman flap showed reduction only in periodontal pocket depth with statistically significance(p<0.001) after 6 months. 2. Although periodontal probing depth change during 6 months did not show any significant differences between the test group and the control group, clinical attachment level gain and re-cession change showed significant differences between the two groups(p<0.05). On the basis of these results, anorganic bovine-derived xenograft improves probing depth and clinical attachment level in periodontal intrabony defects. Anorganic bovine-derived xenograft could be a predictable bone substitute in clinical use.

Anorganic bovine bone을 이용한 상악동저 거상술의 조직학적 평가 (Maxillary sinus floor augmentation with anorganic bovine bone : Histologic evaluation in humans)

  • 손우경;신승윤;양승민;계승범
    • Journal of Periodontal and Implant Science
    • /
    • 제39권1호
    • /
    • pp.95-102
    • /
    • 2009
  • Purpose: The aim of this report is to investigate the efficacy of anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) at maxillary sinus floor augmentation. Materials and methods: Two male patients who missed maxillary posterior teeth were included. They were performed maxillary sinus floor augmentation using anorganic bovine bone xenograft(Bio-$Oss^{(R)}$). After 10 or 13 months, the regenerated tissues were harvested using trephine drills with 2 or 4mm diameter and non-decalcified specimens were made. The specimens were examined histologically and histomorphometrically to investigate graft resorption and new bone formation. Results: Newly formed bone was in contact with Bio-$Oss^{(R)}$ particles directly without any gap between the bone and the particles. The proportions of newly formed bone were $23.4{\sim}25.3%$ in patient 1(Pt.1) and 28.8% in patient 2(Pt.2). And the proportions of remained Bio-$Oss^{(R)}$ were $29.7{\sim}30.2%$ in Pt.1 and 29.2% in Pt.2. The fixtures installed at augmented area showed good stability and the augmented bone height was maintained well. Conclusion: Anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) has high osteoconductivity and helps new bone formation, so that it can be used in maxillary sinus floor augmentation.

탄산아파타이트로 된 인공골과 소뼈에서 유래한 무기질 골의 초기 골전도에 대한 연구 (A STUDY ABOUT EARLY OSTEOCONDUCTIVITY OF POROUS ALLOPLASTIC CARBONAPATITE AND ANORGANIC BOVINE XENOGRAFT IN CANINE MAIXLLIARY AUGMENTATION MODEL)

  • 김도균;조태형;송윤미;판휘;이수연;진임건;김인숙;홍국선;황순정
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권6호
    • /
    • pp.485-493
    • /
    • 2007
  • Introduction: Although several types of calcium-phosphate coumpound have been frequently applied to osseous defects at maxillofacial area for many years, there is a controversy about its efficiency on bone conductivity comprared to xenograft bone substitute. Alloplastic carbonapatite has been introduced to improve disadvantages of hydroxyapatite and to mimic natural bone containing carbon elements. However, a preclinical study about its efficiency of osteoconductivity has not been reported. This study was performed to evaluate the early osteoconductive potential of synthetic carbonapatite with multiple pores relative to anorganic bovine xenograft. Materials and methods: Total 5 beagle dogs were used for maxillary augmentation model. The control (anorganic bovine xenograft) and experimental groups (synthetic carbonapatite) were randomly distributed in the mouth split design. After bone graft, all animals were sacrificed 4 weeks after surgery. Histological specimens with Masson Trichrome staining were made and histomorphometrically analysed with image analyser. The statistical analysis was performed using paired t-test. Results: In both groups, all animals had no complications. The experimental group showed relatively much new bone formation around and along the bone substitutes, whereas it was clearly reduced in the control group. The ratios of new bone area to total area, to material area and to the residual area excluding materials were higher in the experimental group ($0.13{\pm}0.03,\;0.40{\pm}0.13,\;0.20{\pm}0.06$ respectively) than in the control group ($0.01{\pm}0.01,\;0.03{\pm}0.02,\;0.03{\pm}0.03$, respectively). And the differences between both groups were statistically significant (p<0.001, <0.01, <0.01, respectively), while the ratio of material area to total area in two groups was not significant. Conclusion: Carbonapatite showed a high osteoconductivity in the early stage of bone healing compared to bovine derived anorganic bone substitute. This study suggests that this bone materials can be applied as a reliable bone substitute in the clinical treatment.

다양한 골 이식재의 임상 효과에 대한 고찰 (A study of the clinical effects of various bone graft materials)

  • 이승범;연제영;채경준;정의원;김창성;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권4호
    • /
    • pp.719-732
    • /
    • 2007
  • Purpose: Various bone graft materials are being used for periodontal tissue regeneration. Th materials are being developed continuously for ideal clinical effects. Therefore, it is necessary to identify the clinical characteristics of each bone graft material through comparing the various bone graft materials statistically and in doing so, proposing a more efficient bone graft material. In this study, the following results were attained through comparing the clinical effects among the bone graft materials, using the statistical method based on the clinical studies published at the department of periodontology of Yonsei hospital. Materials and Method: 6 selected studies of department of Periodontology at Yonsei University Hospital were based on clinical study of bone grafting in intrabony defects. It was compared the clinical parameters among the 6 clinical studies, using the statistical META analysis. Result: When comparing the probing depth reduction, there was a relatively great amount of decease when using the xenograft, Anorganic Bovine Derived Hydroxapatite Bone Matrix/Cell Binding Peptide(ABM/P-15: PepGen $P-15^{(R)}$) and the autogenous bone and absorbable membrane, d, 1-alctide/glycolide copolymer(GC: $Biomesh^{(R)}$). The allogfrafts showed a relatively low decrease in the probing depth and clinical attachment change. It also showed a slight decrease in the bone probing depth. The allografts showed various results according to different bone graft materials. When comparing the ABM/P-15 and bovine bone $powder(BBP^{(R)})$, ABM/P-15 showed a relatively high clinical attachment level and the bovine bone powder showed a relatively high clinical attachment level. The probing depth change and gingival recession change showed a lower value than the mean value between the two bone graft materials. The synthetic bone showed a relatively high decrease in clinical attachment level and periodontal probing depth change. There was a relatively larger amount of gingival recession when using Bioactive Glass(BG) but a relatively low bone regeneration effect was seen. Conclusion: Good restorative results of the periodontal tissue can be attained by applying the various bone graft materials being used today after identifying the accurate clinical effects.

칼슘포스페이트 나노-크리스탈이 코팅된 골이식재와 자가골을 병행 이용한 상악동 거상술 (SINUS FLOOR GRAFTING USING CALCIUM PHOSPHATE NANO-CRYSTAL COATED XENOGENIC BONE AND AUTOLOGOUS BONE)

  • 방강미;이보한;알라쉬단;유상배;성미애;김성민;장정원;김명진;고재승;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권3호
    • /
    • pp.243-248
    • /
    • 2009
  • Purpose: Rehabilitation of the edentulous posterior maxilla with dental implants often poses difficulty because of insufficient bone volume caused by pneumatization of the maxillary sinus and by crestal bone resorption. Sinus grafting technique was developed to increase the vertical height to overcome this problem. The present study was designed to evaluate the sinus floor augmentation with anorganic bovine bone (Bio-$cera^{TM}$) using histomorphometric and clinical measures. Patients and methods: Thirteen patients were involved in this study and underwent total 14 sinus lift procedures. Residual bone height was ${\geq}2mm$ and ${\leq}6mm$. Lateral window approach was used, with grafting using Bio-$cera^{TM}$ only(n=1) or mixed with autogenous bone from ramus and/or maxillary tuberosity(n=13). After 6 months of healing, implant sites were created with 3mm diameter trephine and biopsies taken for histomorphometric analysis. The parameters assessed were area fraction of new bone, graft material and connective tissue. Immediate and 6 months after grafting surgery, and 6 months after implantation, computed tomography (CT) was taken and the sinus graft was evaluated morphometric analysis. After implant installation at the grafted area, the clinical outcome was checked. Results: Histomorphometry was done in ten patients.Bio-$cera^{TM}$ particles were surrounded by newly formed bone. The graft particles and newly formed bone were surrounded by connective tissue including small capillaries in some fields. Imaging processing revealed $24.86{\pm}7.59%$ of new bone, $38.20{\pm}13.19%$ connective tissue, and $36.92{\pm}14.51%$ of remaining Bio-$cera^{TM}$ particles. All grafted sites received an implant, and in all cases sufficient bone height was achieved to install implants. The increase in ridge height was about $15.9{\pm}1.8mm$ immediately after operation (from 13mm to 19mm). After 6 months operation, ridge height was reduced about $11.5{\pm}13.5%$. After implant installation, average marginal bone loss after 6 months was $0.3{\pm}0.15mm$. Conclusion: Bio-$cera^{TM}$ showed new bone formation similar with Bio-$Oss^{(R)}$ histomorphometrically and appeared to be an effective bone substitute in maxillary sinus augmentation procedure with the residual bone height from 2 to 6mm.