• Title/Summary/Keyword: Anodic reaction

Search Result 166, Processing Time 0.025 seconds

Redox Reaction on Polarization Curve Variations of Polymer with Enzymes

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • Experiments were carried out to measure variations in the oxidation potential and current density using the polarization curves of polycarbonate. The results were then examined to identify the influences affecting the oxidation potential related to various conditions, such as temperature, pH, and oxydase(citrate and lipase). The lines representing the active anodic and cathodic dissolution shifted only slightly in the potential direction relative to temperature, pH, and the effect of the enzyme. The Tafel slope for the anodic and cathodic dissolution was determined such that the reversibility polarization was indicated as being effected by various conditions. The slope of the polarization curves describing the active-to-passive transition region shifted noticeably in their direction. Also, by varying the conditions, the optimum conditions for the most ready transform were identified, including temperature, pH, oxidation rate, and resistance of oxidation potential. The critical oxidation sensitivity(I(sub)r/I(sub)f) of the anodic current density peak and maximum passive current density was also determined, which is used in measuring the critical corrosion sensitivity of a polycarbonate.

  • PDF

Fabrication of Single-Crystal Silicon Microstructure by Anodic Reaction in HF Solution (HF 양극반응을 이용한 단결정 실리콘 미세구조의 제조)

  • Cho, Chan-Seob;Sim, Jun-Hwan;Lee, Seok-Soo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.183-194
    • /
    • 1992
  • Some silicon micromechanical structures useful in sensors and actuators have been fabricated by electropolishing or porous silicon formation technique by anodic reaction in HF solution. The microstructures were lightly doped single crystal silicon and the formation was isotropic independent of crystal directions. Porous silicon layer(PSL) was formed selectively in $n^{+}$ region of $n^{+}/n$ silicon structure by anodic reaction in concentrated HF(20-48%) solution. Characteristics of the formed PSL were investigated along with change of the reaction voltage, HF concentration and the reaction time. PSL was formed only in $n^{+}$ region. The porosity of the PSL was decreased with the increase of HF concentration and independent of reaction voltage. For the case of $n/n^{+}/n$ structures, the etched surface of silicon was fairly smooth and a cusp was not found. The thickness of the microstructures was the same as that of the epitaxial n-Si layer and good uniformity. We have fabricated acceleration sensors by anodic reaction in HF solution(5 wt%) and planar technology. The process was compatible with conventional It fabrication technique. Various micromechanical structures, such as rotors of motor, gears and linear actuator, were also fabricated by the technique and examined by SEM photographs.

  • PDF

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

A Study on the Growth and Burning of Anodic Oxide Films on Al6061 Alloy During Anodizing at Constant Voltages (Al6061 합금의 정전압 아노다이징 피막의 형성거동 및 버닝에 대한 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Song, Pungkeun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, growth and burning behavior of 6061 aluminum alloy was studied under constant anodic voltages at various temperatures and magnetic stirring rates in 20% sulfuric acid solution by analysing I-t curves, measuring thickness and hardness of aluminum anodic oxide (AAO) films, observations of surface and cross-sectional images of AAO films. AAO films were grown continuously at lower voltages than 18.5V but burning occurred when a voltage more than 19V was applied in 20% H2SO4 solution at 20±0.5℃ and 200 rpm of magnetic stirring. The burning was always related with an extremely large increase of anodic current density with anodizing time, suggesting that high heat generation during anodizing causes deteriorations of AAO films by chemical reaction with acidic solutions. The burning resulted in decreases of film thickness and hardness, surface color brightened and formation of porous defects in the AAO films. The burning voltage was found to decrease with increasing solution temperature and decreasing magnetic stirring rate. The decreased burning voltages seem to be closely related with increased chemical reactions between AAO films and hydrogen ions.

Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

  • Choi, Changkun;Jeong, Youngsam;Kwon, Yongchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and $Cu^{2+}$ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given $Cu^{2+}$ concentration range of 25-150 ppb, peak stripping current has linearity with $Cu^{2+}$ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb, while their values are 3.99 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

Relationship Between Voltage-time Characteristics and Microstructures of Tantalum Oxide Thin Films Prepared by Anodic Oxidation (양극 산화법으로 제조된 Tantalum Oxide 박막의 전압-시간 특성과 미세구조와의 연관성)

  • 정형진;윤상옥;이동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.443-450
    • /
    • 1991
  • Microstructures of tantalum oxide, anodic-oxidized in oxalic acid, are shown to be related to voltage-time characteristics during formation reaction. It is observed that a crystalline phase transformed from an amorphous phase is recrystallized in the presence of the high electric field within the film, and this recrystallized film has a very porous microstructure. From the results of the XRD, the nonlinearity observed after the first spark voltage is recognized to be due to the local crystallization.

  • PDF

Preparation of High-purity Porous Alumina Carrier for Gas Sensor (가스센서용 고순도 다공질 알루미나 담체의 제조)

  • 이창우;현성호;함영민
    • Fire Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.15-23
    • /
    • 1997
  • In this study, the alumina for gas sensor was prepared by anodic oxidation. It was stable thermally and chemically, and pore diameter and pore distribution was uniform. And the shape of pore was cylinderical. The aluminum plate was carried out by the thermal oxidation, chemical polishing and electropolishing pretreatment. The pore diameter, pore size distribution, pore density and thickness of alumina was observed with the change of reaction temperature, electrolyte concentration and current density. As a results, It was able to use for carrier because alumina which was prepared by anodic oxidationhas uniform pore size distribution.

  • PDF

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G.;Kim D.H.;Hong S.W.;Park S.H.;Lim H.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.