• 제목/요약/키워드: Anodic aluminum oxide (AAO)

검색결과 129건 처리시간 0.028초

스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조 (Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film)

  • 이재형
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.923-928
    • /
    • 2010
  • 양극산화 알루미늄(anodic aluminum oxide, AAO) 나노템플레이트는 제작이 쉬우며, 저비용, 대면적 제작이 가능하다는 장점으로 인해 이를 나노 전자소자 제작에 응용하려는 많은 연구가 이루어지고 있다. 이러한 나노템플레이트를 이용하면 기공의 직경이나 밀도를 변화킴으로써 나노구조의 물질의 크기나 밀도를 제어할 수 있다. 따라서 본 논문에서는 나노 전자소자 제작에 응용할 수 있는 AAO 나노템플레이트를 2단계 양극산화법에 의해 제조하였다. 이를 위해 기존의 알루미늄 판 대신 실리콘 웨이퍼 상에 DC 마그네트론 스퍼터법으로 $2{\mu}m$ 두께의 알루미늄 박막을 증착하였고, 전해액으로 사용한 옥살산 용액의 온도 및 양극산화 전압에 따른 다공성 알루미나 막의 미세구조를 조사하였다. 전해액 온도가 $8^{\circ}C$에서 $20^{\circ}C$로 높아짐에 따라 다공성 알루미나 막의 성장속도는 86.2 nm/min에서 179.5 nm/min으로 증가하였다. 최적 조건에서 제작된 AAO 나노 템플레이트의 기공 직경 및 깊이는 각각 70 nm와 $1\;{\mu}m$이었다.

실리콘 및 사파이어 기판을 이용한 알루미늄의 양극산화 공정에 관한 연구 (Fabrication of Anodic Aluminum Oxide on Si and Sapphire Substrate)

  • 김문자;이진승;유지범
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.133-140
    • /
    • 2004
  • We carried out anodic aluminum oxide (AAO) on a Si and a sapphire substrate. For anodic oxidation of Al two types of specimens prepared were Al(0.5 $\mu\textrm{m}$)!Si and Al(0.5 $\mu\textrm{m}$)/Ti(0.1 $\mu\textrm{m}$)$SiO_2$(0.1 $\mu\textrm{m}$)/GaN(2 $\mu\textrm{m}$)/Sapphire. Surface morphology of Al film was analyzed depending on the deposition methods such as sputtering, thermal evaporation, and electron beam evaporation. Without conventional electron lithography, we obtained ordered nano-pattern of porous alumina by in- situ process. Electropolishing of Al layer was carried out to improve the surface morphology and evaluated. Two step anodizing was adopted for ordered regular array of AAO formation. The applied electric voltage was 40 V and oxalic acid was used as an electrolyte. The reference electrode was graphite. Through the optimization of process parameters such as electrolyte concentration, temperature, and process time, a regular array of AAO was formed on Si and sapphire substrate. In case of Si substrate the diameter of pore and distance between pores was 50 and 100 nm, respectively. In case of sapphire substrate, the diameter of pore and distance between pores was 40 and 80 nm, respectively

Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

  • Lee, In-Hae;Jo, Yun-Kyoung;Kim, Yong-Tae;Tak, Yong-Sug;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1465-1469
    • /
    • 2012
  • For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

Al6061 합금의 정전압 아노다이징 피막의 형성거동 및 버닝에 대한 연구 (A Study on the Growth and Burning of Anodic Oxide Films on Al6061 Alloy During Anodizing at Constant Voltages)

  • 문상혁;문성모;송풍근
    • 한국표면공학회지
    • /
    • 제53권1호
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, growth and burning behavior of 6061 aluminum alloy was studied under constant anodic voltages at various temperatures and magnetic stirring rates in 20% sulfuric acid solution by analysing I-t curves, measuring thickness and hardness of aluminum anodic oxide (AAO) films, observations of surface and cross-sectional images of AAO films. AAO films were grown continuously at lower voltages than 18.5V but burning occurred when a voltage more than 19V was applied in 20% H2SO4 solution at 20±0.5℃ and 200 rpm of magnetic stirring. The burning was always related with an extremely large increase of anodic current density with anodizing time, suggesting that high heat generation during anodizing causes deteriorations of AAO films by chemical reaction with acidic solutions. The burning resulted in decreases of film thickness and hardness, surface color brightened and formation of porous defects in the AAO films. The burning voltage was found to decrease with increasing solution temperature and decreasing magnetic stirring rate. The decreased burning voltages seem to be closely related with increased chemical reactions between AAO films and hydrogen ions.

스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절 (Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate)

  • 지상훈;장춘만;정우철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

양극산화알루미늄의 형상제어와 이를 이용한 실리콘 분말 전극 지지체 효과 (Shape Control of Anodic Aluminum Oxide and Effect as Support of Silicon Powder Electrode)

  • 송주석;하종근;김유영;박동규;안인섭;안주현;조권구
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.240-246
    • /
    • 2015
  • Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at $4^{\circ}C$. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.

AAO를 이용한 Ni 나노로드의 제조 (Fabrication of the Ni nanorod by AAO template)

  • 박병현;김인수;이민구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.188-190
    • /
    • 2006
  • 본 연구에서는 Anodic Aluminum Oxide(AAO) 템플레이트를 이용하여 전기도금법으로 일정한 길이와 고밀도 대면적의 Nickel nanorod를 제작하였다. 전기도금법으로 AAO-템플레이트내를 채우는 방법으로 제작되었다. 그 결과 직경 $80{\sim}100$ nm, 길이 $0.5{\mu}m$ 가량의 균일한 nanorod를 직경 40mm, 두께 $0.8{\mu}m$의 대면적 원형 AAO-템플레이트에 가득 채우는데 성공 하였으며 AAO 템플레이트는 제거되어 기판 위에 free-standing 되는 구조로 제작 되었다

  • PDF

Three-Dimensional (3D) Anodic Aluminum Surfaces by Modulating Electrochemical Method

  • Jeong, Chanyoung;Choi, Chang-Hwan
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.427-431
    • /
    • 2017
  • Anodic aluminum oxide (AAO) film has recently attracted much attention as a key material for the fabrication of various nanostructures. A control of anodizing voltage (U) was employed to render different anodic aluminum oxide (AAO) nanostructures with pore diameter ($D_p$) and interpore distance ($D_{int}$) in oxalic acid. In this work, we study the effect of stepwise modulation of anodizing voltages on the shape and dimension of porous structures along the vertical direction and demonstrate the fabrication of hierarchical layers of systematically controlled three-dimensional (3D) pore profile.

AAO에 의한 나노로드 제작 (Fabrication of nano-rod on AAO template)

  • 보보무로드 하므로구로프;박병현;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.482-484
    • /
    • 2008
  • Anodic aluminum oxide (AAO) which prepared with two-step anodizing method (with dissimilar solutions) was used as a template to fabricate highly ordered, free standing metal nano-rods. AAO nano-template technique can realize self-organized hexagonal pore structure with nanometer dimension size, it's easy to control pore diameter, length and density by varying anodizing conditions. Ni and Ni/Fe/Cu multi-metal layer nanorods were electrochemically deposited into AAO nano-template by AC voltage in simple sulfate solutions.. The properties of samples are tested by X-ray diffraction (XRD), field emission microscopy (FE-SEM).

  • PDF

Dielectric Breakdown Behavior of Anodic Oxide Films Formed on Pure Aluminum in Sulfuric Acid and Oxalic Acid Electrolytes

  • Hien Van Pham;Duyoung Kwon;Juseok Kim;Sungmo Moon
    • 한국표면공학회지
    • /
    • 제56권3호
    • /
    • pp.169-179
    • /
    • 2023
  • This work studies dielectric breakdown behavior of AAO (anodic aluminum oxide) films formed on pure aluminum at a constant current density in 5 ~ 20 vol.% sulfuric acid (SA) and 2 ~ 8 wt.% oxalic acid (OA) solutions. It was observed that dielectric breakdown voltage of AAO film with the same thickness increased with increasing concentration of both SA and OA solutions up to 15 vol.% and 6 wt.%, respectively, above which it decreased slightly. The dielectric breakdown resistance of the OA films appeared to be superior to that of SA films. After dielectric breakdown test, cracks and a hole were observed. The crack length increased with increasing SA film thickness but it did not increase with increasing OA film thickness. To explain the reason why shorter cracks formed on the OA films than the SA films after dielectric breakdown test, the generation of tensile stresses at the oxide/metal interface was discussed in relation to porosity of AAO films obtained from cross-sectional morphologies.