• Title/Summary/Keyword: Anodic aluminum oxide

Search Result 212, Processing Time 0.03 seconds

Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al (수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동)

  • Cha, Taemin;Shin, Byung-Hyun;Hwang, Myungwon;Kim, Do-Hyung;Chung, Won-Sub
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

Preparation of Anodic Alumina Nanotemplate and its Applications (양극산화 알루미나 나노 템플레이트의 제조 및 응용)

  • Jeong, Soo-Hwan;Jung, Seung-Ho;Lee, Kun-Hong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.461-473
    • /
    • 2005
  • Nanotechnology has attracted great attention as one of essential fields in modern science. In particular, the fabrication of nanostructures with nanometer dimension in size is the starting point and essential part of nanotechnology research. Anodic aluminum oxide (AAO) nanotemplate technique has many merits including ease of fabrication, low cost process, and nanotemplate fabrication in large area. Moreover, AAO nanotemplate technique can realize self-ordered hexagonal pore structure with extremely high aspect ratio which is difficult to achieve with conventional lithographic techniques. Simple control of pore dimensions such as diameter, length, and density by varying anodizing condition would be advantageous, too. AAO nanotemplate has been the topic of intensive investigations for the past decade due to above strong points, and the application to various fields of nanotechnology is expected. In this review paper, the fabrication and application of AAO nanotemplate are introduced.

A study on the pore size control of nano template by anodic aluminum oxidation (양극산화를 이용한 나노템플레이트 기공 크기 제어에 관한 연구)

  • Lee, Su-Ho;Seo, Mun-Su;Yoo, Hyun-Min;Lee, Jae-Hyeong;Joung, Yeun-Ho;Lim, Dong-Gun;Hwang, Hyeon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1495-1496
    • /
    • 2011
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, AAO nanotemplate was fabricated by second anodization method. In addition, effects of electrolyte and anodization voltate on the microstructure of porous alumina films were investigated. Vertically well aligned pores had the average pore sizes of 15-70 nm and the length of approximately 40 ${\mu}m$.

  • PDF

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

Manufacture of High-Aspect-Ratio Polymer Nano-Hair Arrays by UV Nano Embossing Process (UV 나노 엠보싱 공정을 이용한 고종횡비 고분자 나노 섬모 어레이 제작)

  • Kim Dong-Sung;Lee Hyun-Sup;Lee Jung-Hyun;Lee Kun-Hong;Kwon Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.773-778
    • /
    • 2006
  • High-aspect-ratio nano-hair or nano-pillar arrays have great potential in a variety of applications. In this study, we present a simple and cost-effective replication method of high-aspect-ratio polymer nano-hair arrays. Highly ordered nano-porous AAO (anodic aluminum oxide) template was utilized as a reusable nano-mold insert. The AAO nano-mold insert fabricated by the two-step anodization process in this study had close- packed straight nano-pores, which enabled us to replicate densely arranged nano-hairs. The diameter, depth and pore spacing of the nano-pores in the fabricated AAO nano-mold insert were about 200nm, $1{\mu}m$ and 450nm, respectively. For the replication of polymer nano-hair arrays, a UV nano embossing process was applied as a mass production method. The UV nano embossing machine was developed by our group for the purpose of replicating nano-structures by means of non-transparent nano-mold inserts. Densely arranged high-aspect-ratio nano-hair arrays have been successfully manufactured by means of the UV nano embossing process with the AAO nano-mold insert under the optimum processing condition.

Fabrication and Characterization of AAO Template with Variation of the Phosphoric Acid Amount of the Etching Solution (에칭용액의 인산 첨가량에 따른 양극산화 알루미늄 템플레이트의 제작 및 특성)

  • Jo, Ye-Won;Kim, Yong-Jun;Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.448-451
    • /
    • 2014
  • Anodic aluminum oxides (AAO) fabricated by the two-step anodizing process have attracted much attention for the fabrication of nano template because of pore structure with high aspect ratio, low cost process and ease of fabrication. AAOs are characterized by a homogeneous morphology of parallel pores that grow perpendicular to the template surface with a narrow distribution of diameter, length and inter-pores spacing, all of which can be easily controlled by suitably choosing of the anodizing parameters such as pH of the electrolyte, anodizing voltage and duration of anodizing. In this study, AAO templates were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM). The dependence of the pore size change according to the amount of addition of phosphoric acid, which was used to remove the initial alumina oxide layer, was not observed.