Preparation of Anodic Alumina Nanotemplate and its Applications

양극산화 알루미나 나노 템플레이트의 제조 및 응용

  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyungpook National University) ;
  • Jung, Seung-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 정수환 (경북대학교 화학공학과) ;
  • 정승호 (포항공과대학교 화학공학과) ;
  • 이건홍 (포항공과대학교 화학공학과)
  • Received : 2005.07.13
  • Published : 2005.08.10

Abstract

Nanotechnology has attracted great attention as one of essential fields in modern science. In particular, the fabrication of nanostructures with nanometer dimension in size is the starting point and essential part of nanotechnology research. Anodic aluminum oxide (AAO) nanotemplate technique has many merits including ease of fabrication, low cost process, and nanotemplate fabrication in large area. Moreover, AAO nanotemplate technique can realize self-ordered hexagonal pore structure with extremely high aspect ratio which is difficult to achieve with conventional lithographic techniques. Simple control of pore dimensions such as diameter, length, and density by varying anodizing condition would be advantageous, too. AAO nanotemplate has been the topic of intensive investigations for the past decade due to above strong points, and the application to various fields of nanotechnology is expected. In this review paper, the fabrication and application of AAO nanotemplate are introduced.

나노 기술은 현대 과학에 있어서 가장 주목 받고 있는 분야이며, 특히 나노미터 크기의 디멘션(dimension)을 가지는 나노 구조물의 제작은 나노 기술 연구의 출발점이며, 핵심 요소이다. 양극산화 알루미나 나노 템플레이트(anodicaluminum oxide or AAO nanotemplate) 기술은 상대적으로 공정이 쉽고 경제적이며, 대면적으로 나노 템플레이트의 제작이 가능하다는 장점을 가지고 있다. 또한 현재의 리소그래피 기술로는 달성하기 어려운 수준의 매우 큰 종횡비(aspect ratio)를 가능하게 하고, 조건을 변화시킴에 따라서 나노 템플레이트 기공의 직경 및 길이, 기공 밀도의 조절이 용이하다는 장점을 가지고 있어서 최근 10여 년간 매우 활발하게 이와 관련된 연구가 진행되어 왔으며, 다양한 나노 기술 분야로의 응용이 기대된다. 본 총설에서는 양극산화 알루미나 나노 템플레이트의 제조 및 응용에 대해 기술하였다.

Keywords

References

  1. H. Masuda and K. Fukuda, Science, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  2. S. Murali, M. Ramachandra, K. S. S. Murthy, and K. S. Raman, Prakt. Metallogr., Development of Electropolishing Techniques on Metals and Alloys, 7, 359 (1996)
  3. S. Murali, M. Ramachandra, K. S. S. Murthy, and K. S. Raman, Mater. Charact., Electropolishing of AI-7Si-0.3Mg cast alloy by using perchloric and nitric acid electrolytes, 38, 273 (1997) https://doi.org/10.1016/S1044-5803(97)00085-5
  4. W. J. McTegart, The Electrolytic and Chemical Polishing of Metals in Research and Industry, 2nd ed., Pergamon Press, London (2959)
  5. G. Patermarakis, K. Moussoutzanis, and J. Chandrionos, Appl. Catal. A, Preparation of ultra-active alumina of designed porous structure by successive hydrothennal and thermal treatments of porous anodic $Al_2O_3$ films, 180, 345 (1999) https://doi.org/10.1016/S0926-860X(98)00356-1
  6. O. Jessensky, F. Miler, and U. Gsele, Appl. Phys. Left., Selforganized fonnation of hexagonal pore arrays in anodic alumina, 72, 1173 (1998)
  7. D. Al-Mawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys., Magnetic properties of Fe deposited into anodic aluminwn oxide pores as a function of particle size, 70, 4421 (1991) https://doi.org/10.1063/1.349125
  8. H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask, 35, L126 (1996) https://doi.org/10.1143/JJAP.35.L126
  9. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys., Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution, 37, L1340 (1998) https://doi.org/10.1143/JJAP.37.L1340
  10. H. Masuda, H yamada, M Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl Phys. Lett., Highly ordered nanochannel-array architecture in anodic alumina, 71, 2770 (1997) https://doi.org/10.1063/1.120128
  11. A. P. Li, F. Miler, A. Birner, K. Nielsch, and U. Gsele, J. Appl. Phys., Hexagonal pore arrays with a 50420 nm interpore distance fonned by self-organization in anodic alumina, 84, 6023 (1998) https://doi.org/10.1063/1.368911
  12. A. P. Li, F. Miler, A. Birner, K. Nielsch, and U. Gsele, Adv. Mater., Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina, 11, 483 (1999) https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
  13. A. P. Li, F. Mller, and U. Gsele, Electrochem. Solid-State Left., Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina, 3, 131 (2000)
  14. O. Jessensky, F. Muller, and U. Gsele, J. Electrochem. Soc., Self: Organized Formation of Hexagonal Pore Structures in Anodic Alumina, 145, 3735 (1998) https://doi.org/10.1149/1.1838867
  15. F. Li, L Zhang, and R. M. Metzger, Chem. Maer., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, 10, 2470 (1998)
  16. L. Zhang, H. S. Cho, F. Li, R. M. Metzger, and W. D. Doyle, J. mater. Sci. Left., Cellular growth of highly ordered porous anodic films on aluminium, 17, 291 (1998)
  17. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, Jpn. Appl. Phys., Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum, 36, 7791 (1997) https://doi.org/10.1143/JJAP.36.7791
  18. S. Iijima, Nature, Helical microtubules of graphitic carbon, 354, 56 (1991) https://doi.org/10.1038/354056a0
  19. O. J. Lee, S. K. Hwang, S. H. Jeong, P. S. Lee, and K. H. Lee, Synthetic Metals, Synthesis of carbon nanotubes with identical dimensions using an anodic aluminum oxide template on a silicon wafer, 148, 263 (2005) https://doi.org/10.1016/j.synthmet.2004.10.005
  20. S. H. Jeong, O. J. Lee, and K. H. Lee, Chem. Mater., Preparation of Aligned Carbon Nanotubes with Prescribed Dimensions: Template Synthesis and Sonication Cutting Approach, 14, 1859 (2002) https://doi.org/10.1021/cm011620h
  21. E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and J. K. Yoo, Adv. Mater., Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide, 14, 277 (2002) https://doi.org/10.1002/1521-4095(20020219)14:4<277::AID-ADMA277>3.0.CO;2-A
  22. S. H. Jeong, H. Y. Hwang, and K. H. Lee, Appl. Phys. Left., Template-based carbon nanotubes and their application to a field emitter, 78, 2052 (2001)
  23. W. B. Choi, B. H. Cheong, J. J. Kim, J. U. Chu, and E. J. Bae, Adv. Funct. Mater., Selective Growth of Carbon Nanotubes for Nanoscale Transistors, 13, 80 (2003) https://doi.org/10.1002/adfm.200390010
  24. S. H. Jung, S. H. Jeong, S. U. Kim, S. K. Hwang, P. S. Lee, K. H. Lee, J. H. Ko, E. J. Bae, D. Kang, W. Park, H. Oh, J. J. Kim, H. Kim, and C. G. Park, Small, Vertically Aligned Carbon-Nanotube Arrays Showing Schottky Behavior at Room Temperature, 1, 553 (2005) https://doi.org/10.1002/smll.200400114
  25. H. Li, C. Xu, G. Zhao, Y. Su, T. Xu, and H. Li, Solid State Communications, Fabrication and magnetic properties of amorphous $Co_{0.71}Pt_{0.29}$ nanowire arrays, 132, 399 (2004) https://doi.org/10.1016/j.ssc.2004.07.065
  26. Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, and Y. Tang, Nano Lett., Electrochemically Induced Sol-Gel Preparation of Single-Crystalline $Ti_O2$ Nanowires, 2, 717 (2002) https://doi.org/10.1021/nl025541w
  27. J. K. Lee, W. K. Koll, W. S. Chae, and Y. R. Kim, Chem. Commun., Novel synthesis of organic nanowires and their optical properties, 138 (2002)
  28. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Chem. Phys. Left., Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates, 325, 340 (2000)
  29. S. R. Nicewarner-Pea, R. G. Freeman, B. D. Reiss, L. He, D. J. Pea, J. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science, Submicrometer Metallic Barcodes, 294, 137 (2001) https://doi.org/10.1126/science.294.5540.137
  30. H. Masuda, K. Yasui, and K. Nishio, Adv. Mater., Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask, 12, 1031 (2000) https://doi.org/10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
  31. D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, Appl. Phys. Lett., Self-ordered pore structure of anodized aluminum on silicon and pattern transfer, 76, 49 (2000) https://doi.org/10.1063/1.125652
  32. H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, Adv. Mater., Fabrication of a Nanostructured Diamond Honeycomb Film, 12, 444 (2000) https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<444::AID-ADMA444>3.0.CO;2-K
  33. C. Guo, J. Feng, J. Zhai, G. Wang, Y. Song, J. Jiang, and D. Zhu, Chem. Phys. Chem., Large-Area Fabrication of a NanostructureInduced Hydrophobic Surface from a Hydrophilic Polymer, 5, 750 (2004) https://doi.org/10.1002/cphc.200400013
  34. T. Gao, J. C. Fan, G. W. Meng, Z. Q. Chu, and J. D. Zhang, Thin Solid Films, Thin Au film with highly ordered arrays of hemispherical dots, 401, 102 (2001) https://doi.org/10.1016/S0040-6090(01)01601-7
  35. A. P. Li, F. Mller, A. Bimer, K. Nielsch, and U. Gsele, Adv. Mater., Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alwnina, 11, 483 (1999) https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
  36. J. Mikulskas, S. Juodkazis, R. Tomainas, and J. G. Dumas, Adv. Mater., Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method, 13, 1574 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  37. S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, and Y. Du, J. Magn. Magn. Mater., Preparation and magnetic property of Fe nanowire array, 222, 97 (2000) https://doi.org/10.1016/S0304-8853(00)00541-2