References
- H. Masuda and K. Fukuda, Science, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
- S. Murali, M. Ramachandra, K. S. S. Murthy, and K. S. Raman, Prakt. Metallogr., Development of Electropolishing Techniques on Metals and Alloys, 7, 359 (1996)
- S. Murali, M. Ramachandra, K. S. S. Murthy, and K. S. Raman, Mater. Charact., Electropolishing of AI-7Si-0.3Mg cast alloy by using perchloric and nitric acid electrolytes, 38, 273 (1997) https://doi.org/10.1016/S1044-5803(97)00085-5
- W. J. McTegart, The Electrolytic and Chemical Polishing of Metals in Research and Industry, 2nd ed., Pergamon Press, London (2959)
-
G. Patermarakis, K. Moussoutzanis, and J. Chandrionos, Appl. Catal. A, Preparation of ultra-active alumina of designed porous structure by successive hydrothennal and thermal treatments of porous anodic
$Al_2O_3$ films, 180, 345 (1999) https://doi.org/10.1016/S0926-860X(98)00356-1 - O. Jessensky, F. Miler, and U. Gsele, Appl. Phys. Left., Selforganized fonnation of hexagonal pore arrays in anodic alumina, 72, 1173 (1998)
- D. Al-Mawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys., Magnetic properties of Fe deposited into anodic aluminwn oxide pores as a function of particle size, 70, 4421 (1991) https://doi.org/10.1063/1.349125
- H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask, 35, L126 (1996) https://doi.org/10.1143/JJAP.35.L126
- H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys., Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution, 37, L1340 (1998) https://doi.org/10.1143/JJAP.37.L1340
- H. Masuda, H yamada, M Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl Phys. Lett., Highly ordered nanochannel-array architecture in anodic alumina, 71, 2770 (1997) https://doi.org/10.1063/1.120128
- A. P. Li, F. Miler, A. Birner, K. Nielsch, and U. Gsele, J. Appl. Phys., Hexagonal pore arrays with a 50420 nm interpore distance fonned by self-organization in anodic alumina, 84, 6023 (1998) https://doi.org/10.1063/1.368911
- A. P. Li, F. Miler, A. Birner, K. Nielsch, and U. Gsele, Adv. Mater., Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina, 11, 483 (1999) https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
- A. P. Li, F. Mller, and U. Gsele, Electrochem. Solid-State Left., Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina, 3, 131 (2000)
- O. Jessensky, F. Muller, and U. Gsele, J. Electrochem. Soc., Self: Organized Formation of Hexagonal Pore Structures in Anodic Alumina, 145, 3735 (1998) https://doi.org/10.1149/1.1838867
- F. Li, L Zhang, and R. M. Metzger, Chem. Maer., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, 10, 2470 (1998)
- L. Zhang, H. S. Cho, F. Li, R. M. Metzger, and W. D. Doyle, J. mater. Sci. Left., Cellular growth of highly ordered porous anodic films on aluminium, 17, 291 (1998)
- S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, Jpn. Appl. Phys., Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum, 36, 7791 (1997) https://doi.org/10.1143/JJAP.36.7791
- S. Iijima, Nature, Helical microtubules of graphitic carbon, 354, 56 (1991) https://doi.org/10.1038/354056a0
- O. J. Lee, S. K. Hwang, S. H. Jeong, P. S. Lee, and K. H. Lee, Synthetic Metals, Synthesis of carbon nanotubes with identical dimensions using an anodic aluminum oxide template on a silicon wafer, 148, 263 (2005) https://doi.org/10.1016/j.synthmet.2004.10.005
- S. H. Jeong, O. J. Lee, and K. H. Lee, Chem. Mater., Preparation of Aligned Carbon Nanotubes with Prescribed Dimensions: Template Synthesis and Sonication Cutting Approach, 14, 1859 (2002) https://doi.org/10.1021/cm011620h
- E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and J. K. Yoo, Adv. Mater., Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide, 14, 277 (2002) https://doi.org/10.1002/1521-4095(20020219)14:4<277::AID-ADMA277>3.0.CO;2-A
- S. H. Jeong, H. Y. Hwang, and K. H. Lee, Appl. Phys. Left., Template-based carbon nanotubes and their application to a field emitter, 78, 2052 (2001)
- W. B. Choi, B. H. Cheong, J. J. Kim, J. U. Chu, and E. J. Bae, Adv. Funct. Mater., Selective Growth of Carbon Nanotubes for Nanoscale Transistors, 13, 80 (2003) https://doi.org/10.1002/adfm.200390010
- S. H. Jung, S. H. Jeong, S. U. Kim, S. K. Hwang, P. S. Lee, K. H. Lee, J. H. Ko, E. J. Bae, D. Kang, W. Park, H. Oh, J. J. Kim, H. Kim, and C. G. Park, Small, Vertically Aligned Carbon-Nanotube Arrays Showing Schottky Behavior at Room Temperature, 1, 553 (2005) https://doi.org/10.1002/smll.200400114
-
H. Li, C. Xu, G. Zhao, Y. Su, T. Xu, and H. Li, Solid State Communications, Fabrication and magnetic properties of amorphous
$Co_{0.71}Pt_{0.29}$ nanowire arrays, 132, 399 (2004) https://doi.org/10.1016/j.ssc.2004.07.065 -
Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, and Y. Tang, Nano Lett., Electrochemically Induced Sol-Gel Preparation of Single-Crystalline
$Ti_O2$ Nanowires, 2, 717 (2002) https://doi.org/10.1021/nl025541w - J. K. Lee, W. K. Koll, W. S. Chae, and Y. R. Kim, Chem. Commun., Novel synthesis of organic nanowires and their optical properties, 138 (2002)
- D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Chem. Phys. Left., Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates, 325, 340 (2000)
- S. R. Nicewarner-Pea, R. G. Freeman, B. D. Reiss, L. He, D. J. Pea, J. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science, Submicrometer Metallic Barcodes, 294, 137 (2001) https://doi.org/10.1126/science.294.5540.137
- H. Masuda, K. Yasui, and K. Nishio, Adv. Mater., Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask, 12, 1031 (2000) https://doi.org/10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
- D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, Appl. Phys. Lett., Self-ordered pore structure of anodized aluminum on silicon and pattern transfer, 76, 49 (2000) https://doi.org/10.1063/1.125652
- H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, Adv. Mater., Fabrication of a Nanostructured Diamond Honeycomb Film, 12, 444 (2000) https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<444::AID-ADMA444>3.0.CO;2-K
- C. Guo, J. Feng, J. Zhai, G. Wang, Y. Song, J. Jiang, and D. Zhu, Chem. Phys. Chem., Large-Area Fabrication of a NanostructureInduced Hydrophobic Surface from a Hydrophilic Polymer, 5, 750 (2004) https://doi.org/10.1002/cphc.200400013
- T. Gao, J. C. Fan, G. W. Meng, Z. Q. Chu, and J. D. Zhang, Thin Solid Films, Thin Au film with highly ordered arrays of hemispherical dots, 401, 102 (2001) https://doi.org/10.1016/S0040-6090(01)01601-7
- A. P. Li, F. Mller, A. Bimer, K. Nielsch, and U. Gsele, Adv. Mater., Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alwnina, 11, 483 (1999) https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
- J. Mikulskas, S. Juodkazis, R. Tomainas, and J. G. Dumas, Adv. Mater., Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method, 13, 1574 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
- S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, and Y. Du, J. Magn. Magn. Mater., Preparation and magnetic property of Fe nanowire array, 222, 97 (2000) https://doi.org/10.1016/S0304-8853(00)00541-2