• Title/Summary/Keyword: Anodic Bonding

Search Result 56, Processing Time 0.028 seconds

Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method (다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석)

  • Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.

The Study on Anodic Bonding (양극접합에 관한 연구)

  • 정철안;박정도;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.338-341
    • /
    • 1996
  • Anodic bonding is a key technology for micromechanical components. The main advantages of this method can be formed in a batch process, over large areas, and is permanent and irreversible. In this paper, the bonding was performed at temperatures ranging from 300 to 450 $^{\circ}C$, voltages 400 to 1000 V, and times 10 to 30 minutes. The sizes of the Si and the Pyrex #7740 glass were 6 mm $\times$6 mm, respectively. Bonding processes and voids were observed by the optical microscope, and the composition of the anodic bonding interface was analyzed by the SIMS. Optimum condition of the anodic bonding was at temperature above 40$0^{\circ}C$ without regard to voltage.

  • PDF

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications (파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성)

  • Ahn, Jung-Hac;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Development of High Aspect Ratio Spacer Process using Anodic Bonding for FED (정전접합을 이용한 고종횡비의 FED용 스페이서 공정 개발)

  • Kim, Min-Su;Kim, Gwan-Su;Mun, Gwon-Jin;U, Gwang-Je;Lee, Nam-Yang;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.70-72
    • /
    • 2000
  • In this paper, a spacer process for FED(Field Emission Display) was developed with the glass to glass anodic bonding technology using Al film as an interlayer and a 3.5 inch monochromatic type FED was fabricated. Holder to dislocate spacers vertically was designed with (110) Si wafer by bulk etching. Spacers, $100\mum\; width\; and\; 1000\mum$ height, were formed on anode panel by spacer to glass anodic bonding and the fabricated FED was operated for emission at 1㎸ anode voltage.

  • PDF

Experimental Analysis on the Anodic Bonding with Evaporated Glass Layer

  • Choi, Woo-Beom;Ju, Byeong-Kwon;Lee, Yun-Hi;Jeong, Seong-Jae;Lee, Nam-Yang;Koh, Ken-Ha;Haskard, M.R.;Sung, Man-Young;Oh, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1946-1949
    • /
    • 1996
  • We have performed silicon-to-silicon anodic bonding using glass layer deposited by electron beam evaporation. Wafers can be bonded at $135^{\circ}C$ with an applied voltage of $35V_{DC}$, which enables application of this technique to the vacuum packaging of microelectronic devices, because its bonding temperature and voltage are low. From the experimental results, we have found that the evaporated glass layer more than $1\;{\mu}$ m thick was suitable for anodic bonding. The role of sodium ions for anodic bonding was also investigated by theoretical bonding mechanism and experimental inspection.

  • PDF

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Development of spacer technology using glass to glass anodic bonding for FED (유리-유리 정전접합을 이용한 FED스페이서 기술 개발)

  • 김민수;박세광;문권진;김관수;우광제;정성재;이남양
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.465-469
    • /
    • 1999
  • In this paper, spacer process for FED (Field Emission Display ) was developed with the glass to glass anodic bonding technology using Al film as an interlayer. Characteristics, current density-time curves and force of the anodic boding were measured on various thickness of Al film; 1000$\AA$, 2000$\AA$, 3000$\AA$, 4000$\AA$ and 500$\AA$. Holders for spacer were fabricated with photosensitive glass and (110) Si wafer by bulk micromachining. Spacers was formed on glass substrate by spacer glass to glass anodic bonding and an evacuated panel was fabricated to prove the potential of application for FED.

  • PDF

Anodic bonding Characteristics of MLCA to Si-wafer Using Evaporated Pyrex #7740 Glass Thin-Films for MEMS Applications (파이렉스 #7740 유리박막을 이용한 MEMS용 MLCA와 Si기판의 양극접합 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-272
    • /
    • 2003
  • This paper describes anodic bonding characteristics of MLCA (Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100%, input power $1\;W/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA and Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-0.08 %FS. Moreover, any damages or separation of MLCA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MLCA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.