• Title/Summary/Keyword: Anodic

Search Result 1,274, Processing Time 0.029 seconds

Removal of Heavy Metal Ions in the Aqueous Solution Using Anodic Alumina and Retriculate Vitreous Carbon Electrodes (Anodic Alumina와 Retriculate Vitreous Carbon을 전극으로 사용하여 수용액에서 중금속이온의 제거)

  • Cho, Seung-Koo;Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.120-129
    • /
    • 2003
  • The anodic alumina is synthesized using 0.3M oxalic acid and the barrier layers of the anodic alumina are removed using the 20wt% $H_2SO_4$ solution. The structure of the anodic alumina is analyzed by XRD and SEM. It is observed by SEM that the size of anodic alumina pore is about 60nm. And the uniformity of the anodic alumina surface under the 20wt% $H_2SO_4$ solution is poorer than the unifomity of the the normal anodic alumina surface. The anodic alumina and the carbon are used cathode and anode in$Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions. In this study, the constant D.C. electrical current is flowed in each solution for 24hours. It is found that the voltages so far as 4.6, 3.4 and 5.1V at $Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions increase with increasing the flowing current time and after the voltage does not change which values are 4.2, 2.7 and 2.4V, respectively. The amount of metal ions in solutions decrease with increasing the flowing current time until the flowing current time is 18hours and the metals are formed at the surface of anodic alumina. After the metal ions are removed using the anodic alumina, and $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are removed again using flow cell with retriculate vitreous carbon(RVC) working electrode. The concentration of $Cd^{2+}$, and $Co^{2+}$ions decrease until the flowing time of the solutions is 20minutes and the concentration of $Pb^{2+}$ ion decreases until that time is 30minutes. In this case, the removal effects of $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are 34.78, 28.79 and 86.38%, respectively. And it is possible that both $Cd^{2+}$ and $Co^{2+}$ions are adsorbed in pore of RVC at the same time and the removal effects of $Cd^{2+}$ and $Co^{2+}$ions are 32.30 and 31.37%.

  • PDF

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Formation and Chemical Dissolution Behaviors of Nano Porous Alumina (나노 기공성 알루미나의 생성과 화학적 용해 거동)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.217-223
    • /
    • 2010
  • For an application as templates of high performance with proper pore size and shape, porous anodic alumina films were prepared by anodization in oxalic acid, and formation behaviors of anodic alumina layer as well as dissolution process in acid solution have been investigated. The surface characteristics on anodic alumina layer were shown to be dependent on the fabrication parameters for anodization. For the dissolution behaviors of anodic alumina, the thickness of the barrier-type alumina layer decreased linearly with the rate of 0.98 nm/min in $H_3PO_4$ solution at $30^{\circ}C$. The changes of the anodic alumina layers were analyzed by SEM and TEM.

Electrocoloring during Anodic Oxidation of 6063 Aluminium Alloy (알루미늄 양극산화 피막의 전해착색에 관한 연구)

  • 정순오;한성호;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.309-318
    • /
    • 2000
  • The 6063 Aluminium alloy were electrocolored and anodized at the same time in addition of $CoSO_4$, $FeSO_4$, in the electrolyte and investigated by AES/SAM. It was found that the thickness of anodic oxide film is increased linearly in DC type, and DC combined AC type, the more ratio of anodic Portion in AC, the more increased of anodic film thickness. The color of anodic film was changed from silver to yellow when the increase of the ratio of cathodic portion in AC. Also the increase of $CoSO_4$, $FeSO_4$ in the electrolyte, the coloring time is decreased. From the AES/SAM results, the element of anodic oxide film are Al,O and S. The result of depth profile, the most of the S distributed on the surface and the more S is in DC combined AC type than only DC type.

  • PDF

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Characteristic Evaluation of Anodic Film Depending on the Concentration of Sodium Silicate in the Electrolyte Anodized AZ31B Magnesium Alloy (전해액 중 Sodium silicate의 농도에 따라 양극 산화된 AZ31B 마그네슘 합금 양극 피막의 특성 평가)

  • Lee, Dong-Kil;Kim, Yong-Hwan;Park, Hyun;Jung, Uoo-Chang;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.109-115
    • /
    • 2009
  • Magnesium is one of the lightest metals, and magnesium alloys have excellent physical and mechanical properties such as high stiffness/weight ratios, good castability, good vibration and shock absorption. However their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To improve these defects, many techniques are developed. Micro arc oxidation(MAO) is a one of the surface treatments under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy. In this study, the characteristics of anodic film were examined after coating the AZ31B magnesium alloy through the MAO process. MAO was carried out in potassium hydroxide, potassium fluoride, and various concentration of sodium silicate in electrolyte. The morphology and chemical composition of the coating layer were characterized by SEM, XRD, EPMA and EDS. The hardness of anodic films was measured by micro-vickers hardness tester. As a result, the morphology and composition of anodic film were changed by concentration of sodium silicate. Thickness and Si composition of anodic film was increased with increasing concentration of sodium silicate in electrolyte. The hardness of anodic film was highly increased when the concentration of sodium silicate was above 40 g/l in electrolyte.