• Title/Summary/Keyword: Anode Voltage

Search Result 539, Processing Time 0.034 seconds

A study on the enhancement of hole injection in OLED using NiO/AZO Anode (NiO/AZO anode를 적용한 OLED의 정공주입 향상에 관한 연구)

  • Jin, Eun-Mi;Song, Min-Jong;Kim, Jin-Sa;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.444-445
    • /
    • 2007
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering system. An ultrathin layer of nickel oxide (NiO) was deposited on the AZO anode to enhance the hole injections in organic light-emitting diodes (OLED). The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO device.

  • PDF

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.

Discharge Characteristics of Wire Ion Plasma Source (와이어.이온.플라즈마원의 방전 특성)

  • Ko, Kwang-Cheol;Hotta, Eiki
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1776-1778
    • /
    • 1997
  • WIPS is a plasma device which has a wire anode, a coaxially-set cylindrical cathode, and aperture electrodes located in both ends of the cylinder. This electrode configuration forces the potential between the anode and the cathode to change logarithmically with radial direction. Since electrons are confined this logarithmic potential, the high-density plasma is produced even at a rather low anode voltage. In this paper we investigate characteristics of dc and pulse discharges, in which

  • PDF

Atmospheric Micro Glow Plasma-jet Device (상압 마이크로 글로우 방전 분사 소자)

  • Kim, Kang-Il;Kim, Geun-Young;Hong, Yong-Cheol;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1533_1534
    • /
    • 2009
  • This paper presents an atmospheric micro glow plasma-jet device. The device consists of four components; a thin Ni anode, a porous alumina insulater, a stainless steel cathode and an aluminum case. The Ni anode is fabricated using micromachining technology. The anode has 10 holes, of which the hole diameter and the depth are $250{\mu}m$ and $60{\mu}m$, respectively. The discharge test is performed in nitrogen gas at atmospheric pressure for 20 kHz AC bias. The breakdown voltage is 3.5 kV at gas flow rate of 4 L/min and the the plasma-jet is blown out to ambient at 5.5 kV. In order to verify the characteristics of plasma, the current and the voltage of device are measured. The maximum temperature of plasma is $37^{\circ}C$. The plasma is well generated and stable at high voltage.

  • PDF

An Emitter Switched Thyristor with vertical series MOSFET structure (수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

Fabrication of EDM Electrodes by Localized Electrochemical Deposition

  • Habib, Mohammad Ahsan;Gan, Sze Wei;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • The fabrication of complex three-dimensional electrodes for micro electrical discharge machining (micro-EDM) is an important issue in the field of micromachining Localized electrochemical deposition (LECD) is a simple and inexpensive technique for fabricating micro-EDM electrodes. This study presents a new process for manufacturing electrodes with complex cross-sections using masks of different shapes, In this process, a non-conductive mask is placed between an anode and cathode that are immersed in a plating solution of acidified copper sulfate. The LECD is achieved by applying a pulsed voltage between the anode and cathode, which are separated by a small distance. In this setup, the cathode is placed above the anode and the mask, so that the deposited electrode can be used directly for EDM without changing the tool orientation. We found that the microstructure of the deposited electrode is influenced by the concentration of the plating solution and organic additives. Moreover, the values of the voltage, frequency, and duty cycle of the pulsed input have significant effects on the microstructure of the fabricated electrode. Finally, the optimum values of the voltage, frequency, and duty cycle were determined for the most effective fabrication of complex-shaped electrodes.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • Park, Won-Hyeok;Kim, Gang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Characteristics of Amorphous IZO Anode Films Grown on Passivated PES Substrates in Oxygen Free Ambient for Flexible OLEDs (아르곤 가스만을 이용하여 PES 기판 상에 성장시킨 플렉시블 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jung, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1134-1139
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) anode films grown by a RF magnetron sputtering were investigated as functions of RF power and working pressure in pure Ar ambient. To investigate electrical, optical and structural properties of IZO anode films, 4-point probe and UV/VIS spectrometry, and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $15.2{\Omega}/{\square}$, average transmittance above 80 % in visible range, expecially above 85 % in 550 nm, and root mean square roughness of 1.13 nm were obtained from optimized IZO anode films grown in oxygen free ambient. All samples show amorphous structure regardless of RF power and working pressure due to low substrate temperature. In addition, XPS depth profile obtained from IZO/PES exhibits that there is no obvious evidence of interfacial reaction between IZO and PES substrate. Furthermore, current-voltage-luminance of the flexible phosphorescent flexible OLEDs fabricated on IZO anode shows dependence on sheet resistance of the IZO anode. These results indicate that the IZO anode is a promising candidate to substitute conventional ITO anode for high-quality flexible displays.