• Title/Summary/Keyword: Annular Plate

Search Result 108, Processing Time 0.023 seconds

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Identification of Internal Flow Pattern in Effervescent Atomizers (기체주입노즐의 내부유동양식의 구분)

  • Kim, Joo-Youn;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.306-315
    • /
    • 2000
  • An experimental study was conducted to examine the internal flow patterns inside the mixing chamber of effervescent atomizers. The mixing chamber has the rectangular cross section ($8mm{\times}2mm$) and made of transparent acrylic plate for flow visualization. The parameters tested were the air/liquid ratio (ALR), injection. pressure, and the nozzle orifice diameter. Three different flow regimes were observed; bubbly, annular, and intermittent flows. In the bubbly flow regime, the discharged mixture was disintegrated into drops through the bubble expansion and the ligament breakup. On the other hand, in the annular flow regime, the liquid annulus was disintegrated into small drops by the aerodynamic interaction between the phases due to the high relative velocities between the gas and the liquid. In the intermittent flow regime, the bubble-expansion/ligament-disintegration mode and the annulus-disintegration mode appeared alternatively. The correlations representing the transition criteria between the two-phase flow patterns within the mixing chamber were proposed based on the drift-flux models.

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Analysis of Non-uniform Tension Effect on Dynamic Characteristics of Spinning Circular Plates in the Wafer Cutting Machine (웨이퍼 가공기에서 회전 원판의 동특성에 미치는 불균일 장력의 영향 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.324-330
    • /
    • 1998
  • The forced vibration analysis of the outer-clamped spinnig annular disk with arbitrary in-plane is formulated to investigate the influence of non-uniform tension on the cutting accuracy of wafer cutting machine. The arbitrary in-plan force along the outer edge of an annular plate is expressed as a Fourier series. Galerkin method and modal superposition method are employed to obtain the forced responses under the static force and the impulse force in astationary coordinate. Through qualitative and quantitative analyses, it can be found that forced and impulse responses are sensitive to the non-uniformity of in-plane force, which can bring a bad effect to the accuracy of wafer cutting process. Also, in case of a spinning disk with non-uniform in-plane force, critical speed is required to define in a different way, compared with conventional definition in axi-symmetrical spinning disk.

  • PDF

Analytical Investigation on Elastic Behaviors of Isotropic Annular Sector Plates Subjected to Uniform Loading (등분포하중을 받는 등방성 환형 섹터판의 탄성 거동에 대한 해석적 연구)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.241-251
    • /
    • 2010
  • This paper presents the development of a new analytical solution to the governing differential equation for isotropic annular sector plates subjected to uniform loading in a three-dimensional polar coordinate system. The 4th order governing partial differential equation (PDE) was converted to an ordinary differential equation (ODE) by assuming the Levy-type series solution form and the subsequent mathematical operations. Finally, a series-type solution was assembled with homogeneous and nonhomogeneous solution parts after operating real values and complex conjugates derived from the characteristic equation. To demonstrate the convergence rate and the accuracy of the featured method, several examples with various sector angles were selected and solved. The deflections and internal moments in the example annular sector plates that were obtained from the proposed solution were compared with those obtained from other analytical studies and numerical analyses using the finite element analysis package program, ABAQUS. Very good agreement with the results of other analytical and numerical methodologies was shown.

A study on the vibration and the stress measurement of thin rotating discs (얇은 회전원판의 진동, 응력계측에 관한 연구)

  • 한응교;이명호;손민호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 1991
  • In this study, the equations of motion of the thin annular plate with uniform thickness were derived from the classical theory of the plate. In addition the distribution of the inplane stress and the natural frequency due to the change of the ratio of the outer radius to the inner radius was presented by the analytic method using the numerical analysis. Results were compared with those from the experiment. As a result, the strain of rotating circular plate increased as the radius and rpm became greater, and the strain of radial direction was two times greater than that of transverse direction. Besides, it was confirmed that the natural frequency increased according to the decrease of the radius keeping the thickness constant.

  • PDF

A Study on the Coupled Vibration of Train wheel and Rail Dynamic Chaacteristics of Train Wheel with the Stepped Thickness (차륜과 철로의 연성진동에 관한 연구)

  • 김광식;박문태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.142-144
    • /
    • 1986
  • The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma./sub c/, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method.

  • PDF

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

Vibration Analysis of Circular Plate with Continuously Varying Thickness (가변두께를 가지는 원판의 진동해석에 관한 연구)

  • Shin, Young Jae;Jaun, Su Ju;Yun, Jong Hak;Yoo, Yeong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • paper presents the results of the use of the differential transformation technique in analyzing the free vibration of circular plates.calculations were carried out and were compared with previously published results. The results that were obtained when this method was used coincide with the results of The present analysis shows the usefulness and validity of differential transformation in solving a solid-circular and annular-plate problem in terms of free-vibration responses.

STUDY ON TORQUE CONVERTER USING ELECTRO-RHEOLOGICAL FLUID (존가점성 유체를 이용한 동력전달 장치에 관한 연구)

  • 이은준;박명관;주동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.542-545
    • /
    • 1995
  • This paper provides an investigation of torque converter system using ERF (Electro-Rheological Fluid). The torque converter system using ERP is a new concepting device because we can change an apparent viscosity of ERF by adapting an electric field. The device was designed by using the equations which were proposed by Carlson et al. The devices based on ERF generally assume one two possible forms. One is the parallel plate type in which the device elements are facing circular disks separated by a flat layer of ERF, The other is coaxial cylinder or Couette types in which the ERF file the annular apace between a pair of coaxial cylindrical electrode. The discussion on this study is specifically for coaxial cylinder gemetry and experiment results show that the measured torque was rapidly increased with the increase of the eletric field.

  • PDF