• Title/Summary/Keyword: Annular Flow

Search Result 348, Processing Time 0.025 seconds

주유동 기체의 물리적 특성이 환형 분사 초음속 이젝터의 성능에 미치는 영향 (The effects of primary gas physical properties on the performance of annular injection type supersonic ejector)

  • 진정근;김세훈;박근홍;권세진
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.68-75
    • /
    • 2005
  • 주유동 기체의 물리적 특성이 초음속 이젝터 성능에 미치는 영향에 관한 연구를 수행하였다. 기체의 분자량과 정압 비열 변화에 따른 성능 변화에 관한 연구는 축대칭 환형 분사 초음속 이젝터를 사용하였다. 주유동 기체로는 공기, $CO_{2}$, Ar, $C_{3}H_{8}$, $CCl_{2}F_{2}$를 사용하였다. 주유동 기체의 분자량과 정압 비열이 증가함에 따라 일정 주유동 압력에 대한 부유동 압력은 증가하였고 이러한 경향은 몰비열이나 비열비의 형태로 통합되어 확인되었다.

Optimization of outer core to reduce end effect of annular linear induction electromagnetic pump in prototype Generation-IV sodium-cooled fast reactor

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1380-1385
    • /
    • 2020
  • An annular linear induction electromagnetic pump (ALIP) which has a developed pressure of 0.76 bar and a flow rate of 100 L/min is designed to analysis end effect which is main problem to use ALIP in thermohydraulic system of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Because there is no moving part which is directly in contact with the liquid, such as the impeller of a mechanical pump, an ALIP is one of the best options for transporting sodium, considering the high temperature and reactivity of liquid sodium. For the analysis of an ALIP, some of the most important characteristics are the electromagnetic properties such as the magnetic field, current density, and the Lorentz force. These electromagnetic properties not only affect the performance of an ALIP, but they additionally influence the end effect. The end effect is caused by distortion to the electromagnetic field at both ends of an ALIP, influencing both the flow stability and developed pressure. The electromagnetic field distribution in an ALIP is analyzed in this study by solving Maxwell's equations and using numerical analysis.

EFFECTS OF GRID SPACER WITH MIXING VANE ON ENTRAINMENTS AND DEPOSITIONS IN TWO-PHASE ANNULAR FLOWS

  • KAWAHARA, AKIMARO;SADATOMI, MICHIO;IMAMURA, SHOGO;SHIMOHARAI, YUTA;HIRAKATA, YUDAI;ENDO, MASATO
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.389-397
    • /
    • 2015
  • The effects of mixing vanes (MVs) attached to a grid spacer on the characteristics of air-water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV), the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.

깔때기 경사충격파를 고려한 환형 분사 초음속 이젝터 이론해석 (Theoretical Analysis of Annular Injection Supersonic Ejector with a Simple Funnel Shock Wave Model)

  • 김세훈;권세진
    • 한국추진공학회지
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 2006
  • 환형 분사 초음속 이젝터에서는 초음속의 주유동이 벽면을 타고 분사되므로 주유동 노즐 출구(혼합 챔버 입구)에서 혼합챔버의 수축각에 의한 깔때기(funnel) 모양의 경사충격파가 발생한다. 본 연구에서는 이차원(Wedge) 경사충격파와 원뿔(Cone) 경사충격파를 이용하여 간단한 깔때기 경사충격파 모델링(Modeling)을 수행하였다. 이러한 모델링을 이용하여 기존의 이차원 경사충격파를 이용한 이론해석 보다 부유동 압력을 보다 정확히 예측할 수 있었다. 같은 해석 방법을 이용하여 유량비에 대한 초음속 이젝터의 압축비와 단열 효율을 얻을 수 있었다.

환상 파이프 내에서의 의소성 유체를 이용한 열전달 향상에 관한 연구 (Investigation of Heat Transfer Augmentation with Pseudoplastic Fluids in Annular Pipes)

  • 이동렬
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.85-91
    • /
    • 2011
  • Computational results with pseudoplastic fluid flows for fully developed non-Newtonian laminar flows have been obtained. Those consist of the product of friction factor and Modified Reynolds number and Nusselt numbers with respect to the shear rate parameter in an annular pipe. The numerical results of the product of friction factor and Reynolds numbers and the Nusselt numbers for both Newtonian region and the power law region were compared with previously published asymptotic results, respectively. In the present calculations, the product of friction factor and Newtonian Reynolds numbers for pseudoplastic fluid at power law region in annular pipe is 180% less than that for Newtonian fluid. For power law fluids with different power law flow indices, the difference of the product of friction factor and power law Reynolds number between previous and the present results at the power law region is within 0.20%. The solutions also show the effect of the shear rate parameter on the Nusselt number and about 11% increase of Nusselt number at the power region.

Analytical and experimental study on natural sloshing frequencies in annular cylindrical tank with a bottom gap

  • Lee, H.W.;Jeon, S.H.;Cho, J.R.;Seo, M.W.;Jeon, W.B.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.877-895
    • /
    • 2016
  • This paper is concerned with the analytical derivation of natural sloshing frequencies of liquid in annular cylindrical tank and its verification by experiment. The whole liquid domain is divided into three simple sub-regions, and the region-wise linearized velocity potentials are derived by the separation of variables. Two sets of matrix equations for solving the natural sloshing frequencies are derived by enforcing the boundary conditions and the continuity conditions at the interfaces between sub-regions. In addition, the natural sloshing frequencies are measured by experiment and the numerical accuracy of the proposed analytical method is verified through the comparison between the analytical and experimental results. It is confirmed that the present analytical method provides the fundamental sloshing frequencies which are in an excellent agreement with the experiment. As well, the effects of the tank radial gap, the bottom flow gap and the liquid fill height on the fundamental sloshing frequency are parametrically investigated.

비탄성 비뉴톤성 유체의 애뉼라다이 팽창 (Annular Die Swelling of inelastic Non-Newtonian Fluids)

  • 서용석;김광웅
    • 유변학
    • /
    • 제1권1호
    • /
    • pp.46-53
    • /
    • 1989
  • 유한요소법을 이용하여 애뉼라다이 팽창현상을 수치 해석학적으로 분석하였다. 이보 고는 계속적인 연구의 일부로써 비탄성 비뉴토니안 유체인 지수법칙형의 유체에 대한 모사 이다. 이지수법칙형의 유체는 간단하나 고분자 공정 연구에 많이 쓰이는 구성식으로써, 분석 결과는 환형압축체의 두께는 지수법칙 지수에 비례하여 증가하였다. 높은 전단응력 감소유 체의 경우 두께는 증가하지 않고 감소하였다. 비등온 유체 및 여러 다른 형태의 압출형에 대한 수치해석 결과도 예시하였다.

  • PDF

길이 스케일이 관여된 층류 화염의 연소 속도 이해 (Understanding of Laminar Burning Velocity within a Length Scale Domain)

  • 정용진;최용운;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.77-78
    • /
    • 2015
  • Laminar burning velocities have been predicted by constant volume combustion chamber, counter flow burner and others. In this study, the measured flame propagation velocities in an assembled annular stepwise diverging tube were plotted with respect to equivalence ratio, length scale, and velocity scale. Three dimensional approach to understand the flame propagation velocity including laminar burning velocity is investigated, and the surface provides the correlation among quenching distance, propagation velocity, and equivalence ratio.

  • PDF

Analysis of Aerodynamic Performance in an Annular Compressor Bowed Cascade with Large Camber Angles

  • Chen, Shaowen;Chen, Fu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.13-20
    • /
    • 2009
  • The effects of positively bowed blade on the aerodynamic performance of annular compressor cascades with large camber angle were experimentally investigated under different incidences. The distributions of the exit total pressure loss and secondary flow vectors of compressor cascades were analyzed. The static pressure was measured by tapping on the cascade surfaces, and the ink-trace flow visualizations were conducted. The results show that the value of the optimum bowed angle and optimum bowed height decrease because of the increased losses at the mid-span with the increase of the caber angle. The C-shape static pressure distribution along the radial direction exists on the suction surface of the straight cascade with large r camber angles. When bowed blade is applied, the larger bowed angle and larger bowed height will further enhance the accumulation of the low-energy fluid at the mid-span, thus deteriorate the flow behavior. Under $60^{\circ}$ camber angle, flow behavior near the end-wall region of some bowed cascades even deteriorates instead of improving because the blockage of the separated flow near the mid-span keeps the low-energy fluid near the end-walls from moving towards the mid-span region, and as a result, a rapid augmentation of the total loss is easy to take place under large bowed angle. With the increase of camber angle, the choice range of bowed angle corresponding to the best performance in different incidences become narrower.

수평 마이크로 T 자관에서의 2상 환상류 유동분배에 관한 연구 (Study on Dividing Two-phase Annular flow in a Horizontal Micro T-junction)

  • 이준경;조성일
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.16-22
    • /
    • 2011
  • The objective of the present study is to investigate the dividing two-phase flow in a horizontal micro T-junction with the same rectangular cross section, $800\;{\mu}m{\times}800\;{\mu}m$, experimentally. Air and water were used as the test fluids. The superficial velocity ranges of air and water were 15~20 m/s and 0.11~0.2 m/s, respectively. Dividing flow characteristics at the micro T-junction are different from those at the larger T-junctions (5~10 mm in hydraulic diameter). Compared with the results of previous works related with the T-junction with mini cross sections (about 5 mm), for lower range of gas separation, the fraction of the liquid separated through the branch decreases for the fixed fraction of the gas separation. But for higher range of gas separation, higher liquid separation could be found.