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Abstract—Annular extrudate swell is studied using a finite element method. Power-law fluid was simulated,
which has a simple form but is important for polymer processing analysis. The result shows that thickness swell-
ing increases with power-law index. For highly shear thinning fluids, extrudate thickness was contracted rather
than swollen. Nonisothermal case is also studied.
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INTRODUCTION by extrusion conditions, rheological properties of
polymeric fluids, and die geometry. In this article,
Some time ago, a finite element method was us- for a non-Newtonian fluid, power-law fluid model was

ed for the analysis of the annular die swelling used to investigate the effect of shear thickening or

problem [1], which does not accept any simple shear thinning on annular extrudate swell.
reasonable anlaytical solution due to its complicated

geometry originating from two free surface, positions MATHEMATICAL FORMULATION AND

of which are not known & priori. This report presents A FINITE ELEMENT SCHEME
a partial result of continuous study of annular die

swelling problem. The mathematical description of the steady fluid
As well known, the dimensions of annular jet motion is assumed to be given by the following

depend on the swelling ratios, which are influenced equations:
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v .V=0 il
(continuity equation)
AV UV f vy VDT of =V r (2

{momentum equation}

Here the fluid was assumed to be incompressible. in
these equations, V represents the fluid velocity vec-
tor, o the density, f the body force vector per unit
mass, r deviatoric stress tensor, ¢ total stress ten-
sor (=-pl+ 7 ), p pressure.

For the power-law fluid deviatoric stress tensor
is expressed as

= UAm {3)

Here AM is the first Rivlin-Ericksen tensor, de-
fined by

AY=2D=VV+ (VF) '=L+L" 4)

where D is the symmetric part of the velocity gra-
dient L (VV)

Substituting (4} into (3} yields the following equa-
tion for r

r=7n (L+L") (5

where 7 is a function of the strain rate 7 and
temperature. Generally this can be presented as

7=n (7)*"exp (= b{T - T,) {6)

Here 7, is a material parameter, b is a constant, T, is
a reference temperature, and n is the power index.
The transport of thermal energy in the fluid is
described by

oCV VT=S+v-k-VT)+r:D {7)
(energy equation)

where C, is the specific heat, S is the volumetric
heat source, k is the thermal conductivity tensor.
With the suitable boundary conditions, these four
equations (Egs. (1),(2),(5) and (7)) form the basis of
the finite element method used in this study. Using
the variational staterment for these equations im-
plicitly included in conjunction with a finite element
interpolation for the independent variables V, p and
T yields the standard finite element equations. Since
the finite element scheme used in this study has been
fully described elsewhere (2], we don’t repeat lengthy
and complicated derivation and only mention brief-
ly the main features of this scheme. Basically the
finite element method code used here is designed for

steady state, incompressible, two dimensional (plane
or axisymmetric without torsion) fluid problems. It
is based on the Galerkin descritisation procedure,
solving simultaneously equations (1),(2),(5) and (7)
in their full nonlinear forms. To solve nonlinear
terms, iteration was done until converagence occurs
using Newton-Raphson iteration method or suc-
cessive substitution method {2].

FREE SURFACE ITERATIONS AND
A PROBLEM DESCRIPTION

In a free surface problem, such as die swelling
problem, an additional source of nonlinearity is pre-
sent since the location of the free surface is not kno-
wn a priori. Consider the fluid emerging from a die
into the atmosphere as shown in Fig 1. If the shear
stress due to the surrounding air can be ignored, the
free surface condition is equivalent to setting the
shear stress to zero and the normal stress to the am-
brient pressure (generally taken as zero). Also in this
class of problems, in addition to the nonlinearity due
to unknown free surface location, a singularity at die
exit is present since the fluid velocity changes from
zero {no-slip condition on the wall before emerging fr-
om the die) to non-zero value (the no-shear condition
after exiting from the die) in an infinitesimal distance.
This is also the situation in what so called a stick-
slip problem, except the free surface condition.

The shape of the free surface is calculated by
means of an iterative procedure [3]. Let’s consider
the case of an annular die in Fig. 1 with two free sur-
face S, and S, described by the equations
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Fig. 1. Description of the free surface problem

The Korean J. of Rheology, Vol. 1, No. 1, 1989



48 A - g

r'=F ), r’=F,z z;gz57, (8}

Since the free surface is also a stream surface, we
must have

dF, @)
dz

=$—{Z,F,<z}1 Fzo)=1f i=1.2 (9)

where u and v are the radial and axial velocities
respectively, and ry/ are the fixed radius positions at
the exit. The iterative procedure starts from cylin-
drical surfaces on which vanishing contact forces are
imposed; new surfaces are defined by the equations

e R,

dz v Fit' @) =1y i=1,2(10

Here Fr means n th iterated free surfaces. In-
tegrating equation (10} gives

Fiv-Foer)= [ 36, Fr e i=1,2 (1
Zp

These are integrated by means of Simpson’s rule and
generally five or six iterations were enough to pro-
duce converged free surface positions, but sometimes
it needs more iterations.

The basic qualitative aspects of the annular jet
swelling problem are quite similar to those for the
capillary or plane die swelling problems. However,
as mentioned before, a major difference is the
absence of an axis or plane of symmetry and this
necessitates a consideration of the entire flow field
bounded by the two surfaces of the annular chan-
nel; in another words, we should solve two free sur-
face problem,

The other thing to be mentioned is that for an-
nular jet swelling, we can define three different swell-
ing ratios, inside diameter swelling (S,), outside
diameter swelling (S,), and thickness swelling (S) as
follows;

_RI%G.) -ROMe )] RS

Sa R:)n;’:ial (Zm) mﬁ—l .
g [Ra" (an) - REM (2,)) -, K
‘ Rinsar (5 ' R:
sinai - _th!lal - 3
5= R f2a) R ) 1

our - (2=} ~RZM (2,,))

where R, means the inside radius, R_,, is the outside
radius, zcois far downstream, initial means the in-
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itial position before free surface iteration, final means
the final position after free surface iteration. These
swelling ratios are related to each other. If R, and
R/ are 1 and k respectively in dimensionless values,
they can be presented as follows;

Se=R.7-1

S,=1- R//k)

S=R-R/)/{1-k)-1 or

Si=[(11S,) - 1-S)*J/(1-k)-1. 13

The dimensionless values used were R,=1., R,=k.
(=0.5), v,,, =1, p=1.E-5and 7=1.

As we said, “power-law’’ fluid was used, which
has a simple form of constitutive equation but is im-
portant in many industrial polymer processing opera-
tions. For simple shearing motion, the viscosity
depends on shear rate nonlinearly and it is presented
as in equation (6). In equation (6), 7 is presented
in another way as (II) 0.5 generally. II is the se-
cond invariant of the rate of deformation tensor.
In equation (6), when n=1, we recover a Newto-
nian fluid behaviour and when n<1, the flow is
pseudo-plastic (or shear thinning) and when n>1,
it is dilatent (or shear thickening). As explained by
Tanner, e al [4], stability consideration forbids a
negative value of n, because the shear stress should
not decrease with increasing shear rate. So n=0
represents the lower limit for n. In this case (n=0),
we have a plug flow in a die.

The computations were done using the same grid
that was used for the Newtonian fluid case for k=0.5
(104 elements, 8 x 13 mesh. [1]). The problem sketch
is shown in Fig. 2(a) and its grid is shown in Fig. 2(b)
for a straight die of k=0.5. The upstream and
downstream lengths were taken eight times of die gar
to get the converged shapes and to exclude die exit di-
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Fig. 2{a). Annular die swelling problem sketch
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Fig. 2b). Finite clement grid for a die swelling problem

sturbances. Through this study, nine node Lagrangian
clements were used. Boundary conditions on the free
surfaces and solid walls are identical for all fluids-
we assume the normal and tangential stress vanish
on the free surfaces and the fluid sticks to solid walls.
One thing that should be mentioned is that the entry
boundary condition at far upstream is more complex
than for a Newtonian fluid. The annular velocity pro-
files of a power-law fluid is more difficult to obtain
as shown in a paper by Fredrickson and Bird {5]. It
is easy to show that the shear stress component
has the general form Ar + B/1; thus for a fluid with
power-law index n, we have following relationship

7oy (Ar+B/r! 14

This equation can be solved separately for two
ranges, ¥ <Oand 7 >0, to obtain solutions that join
at some radius A where A A+B/ A=0. A,B and
two intergration constants can be obtained by speci-
fying the flow rate, no-slip conditions at the walls
and continuity of velocity at r= A . However, this
requires a considerable computational work. As

an alteration, boundary condition and flow rate
of a Newtonian fluid were applied at far upstream

of the die, then the fluid will have non-Newtonian
fluid velocity profile marching through the fluid path.
So it is necessary 1o use a longer domain than for
a Newtonian fluid to give enough space developing
a non-Newtonian velocity profile. It was observed
from numerical result that eight times length of die
gap was enough for the power-law fluid case.

RESULTS AND DISCUSSION

Dimensional analysis shows that without gravity
and surface tension, the isothermal extrudate swell
is a function of power-law index, n, in the creeping
flow limit. Table 1 presents computed results for this
case when Re=10-5. The thickness swells more
with increasing n. We can expect this easily due to
the shearing in a die and the velocity arrangement
at downstream [6]. The fluid moves outward more
for shear thickening fluid. The thickness swelling with
power-law index n is presented in Fig. 3. From Fig.
3, we can see that the thickness swelling ratio in-
creases almost linearly when n is greater than 0.1.
Also a linearized approximation line is presented in
Fig. 3 when the power-law index n is larger than 0.2,
It is presented

§5,=0.223n-0.077 {19

When n is 1.4, S, reaches as much as 23.25%. So
a shear thickening fluid, we can expect a relatively
large thickness swelling, although it is still not com-
parable to a real polymeric fluid thickness swelling ra-
tio.Overall thickness swelling behaviour is similar to
that of capillary die swelling [4]. However, for shear
thinning fluid {n< 1) the thickness swelling is not 50
large, and since most polymeric fluids or melts have
a value of n between 0.4 and 0.6, as well known, we

Table 1. Annular jet swelling with power-law index.

n S, % S8 % S, T
1.4 16.21 -9, 164 23.25
1.2 12.22 -5.242 19,19
1. 8.6 2.6 14.6

0.8 5.38 -0.28 10.47
0.6 2.73 0.363 5.813
0.4 0.676 -(.218 1.103
0.3 - 0.13 -0.845 - 1,103
0.2 - 0.755 -1.767 - 3.277
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Fig. 4. Sweiling of creeping power-law jets from capillary
as a function of power-law index, nf4]

say that non-Newtonian, inelastic behaviour of
polymeric melt or fluid is not the cause of their large
extrudate swell. It sould be pointed out that when
the power-law index is less than 0.4 in Table 1, the
thickness swelling ratio becomes negative, which
means thickness contraction rather than swelling.
Tanner and his co-workers [4,7,8] said die swell-
ing for a capillary flow decreases with decreasing
power-law index and no swelling occurrs when
power-law index has its minimum value, i,e., zero.
Fig. 4 shows their computational result and also
Wale's experimental result [4]. In Fig. 4, experimen-
tal result shows that thickness swelling reaches 1 when
n is near 0.3, while their computational result decrea-
ses smoothly to zero with small value of n. In Fig. 4
there is not any thickness reduction in Tanner ef af's
computational result. The thickness reduction oc-
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curred to annular jet when n is smaller than 0.4
seems due to fluid nature and its stick boundary
condition at the wall. The more the fluid becomes
shear thining (in another words the smaller the n value
becomes), the more its axial velocity profile becomes
flat in the die, but never totally flat because the stick
boundary condition at the die wall requires zero
velocity there. If the fluid is totally inviscid then it
is the same as one flowing inside of the die with com-
plete slip condition, which yields a plug flow. This
case was studied by Silliman and Scriven [9], and as
we expect, admitting perfect slip (a plug flow) does
not produce any swelling at all. For very small values
of n, however, shearing is confined to regions near
the wali and a large portion of the fluid has a higher
velocity than the average axial velocity. Hence, the
fluid element does not deform much after emerging
from a die. This can be explained in terms of veloci-
ty changes after die exit. Fig. $ shows the axial velocity
change along the fluid path when n is 0.2 (and the
data is presented in Table 2). As we can see, the ax-
ial velocity does not change much after extrusion ex-
cept near die lips. Fluid elements near die lips are
under a pulling force, and to balance it, elements near
the fluid center are under compression. But owing
to the almost flat velocity profile in the fluid, the
compression is distributed evenly across the fluid
thickness. Hence, there is not large pushing from

Velocity

0.0 y v T v
0.5 0.6 0.7 0.8 0.9 1.0
R
Fig. 5. Axial velocity profiles along fluid path when n
equal 10 0.2
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Table 2. Axial velocity along fluid path when n=0.2

Node| I - i _

N':«)ge’ R 50 002 P00 R Boe 75008
1S o o 0 losos7li.007 11.021
2 10.505(0.192{0.24  |0.425[0.514 [1.014 |1.0213
3 10.51 [0.356[0.435 |0.658(0.518 [1.018 |1.0214
4 10.515(0.496]0.595 |0.795(0.523 11.02 |1.0215
s 10.52 |0.614]0.728 |0.88910.528 11.021 |1.0216
6 1056 |1.035/1.0  [1.013/0.567 1.021 |1.0216
7 0.6 |1.16 [1.094 |1.052(0.605 [1.023 |1.0217
8 10.675/1.171(1.143 |1.066 [0.678 [1.031 |1.0217
9 0.75 |1.17 |1.148 |1.068[0.75 [1.029 |1.0217
10 lo.825]1.152]1.16  |1.0670.823 [1.021 |1.0217
11 0.9 {1.086]/1.06 1.044 |0.895 1.019 |1.0217
12 0.94 |0.893[0.955 10.9930.934 [1.018 |1.0217
13 1098 [0.431]0.595 [0.8230.973 |L.017 |1.0217
14 (0.985/0.338(0.474 |0.7220.978 [1.016 |1.0217
15 0.99 |0.236]0.337 |0.5830.983 [1.013 |1.0216
16 0.9950.123[0.18  |0.364(0.987 [1.007 |1.0215
17 1. o o 0. [0.9923l1.007 |1.021

fluid center. Even though the pushing from the center
is small, the stretching at die lips would be relatively
large compared to compression at the center. This
makes the fluid contract after extrusion. When n
is less than 0.1, it took very long computational time
to get a converged solution, So it was not attempted
any more, but it is deemed that there might be a
minimum position of power-law index, n, where
thickness reaches its minimum beyond that walf stip
effect becomes more dominant to make the fluid
thickness increase to be I at n equal to zero (perfect
slip).

As a next step, non-isothermal annular extru-
date swell of a power-law fluid was investigated.
Recently Huynh [10] reported the computational
results of a non-isothermal capillary extrusion for
power-law fluids. According to his results, increas-
ing the temperature dependency parameter of viscosi-
ty, B {=b*T,To)), always brought increased
swelling due to viscous heat dissipation. The effect
was stronger at high values of the power-iaw index
n, and for shear thinning fluids (n<1) there was
hardly any variation at all in swelling with changing
B . His result was for a high Pe (Peclet number) pro-
blem. Here a similar problem was solved with con-
vection boundary condition and temperature
dependent viscosity. Since the annular die swelling

Table 3. Nonisothermal swelling of power-law fluids
when Pe = | No viscous heat dissipation

a} shear thinning fluid, 1= 0.5

V] 0.25 0.75
Nu S, 5 5 S, 8; 3,
0. 1.54 0.08 3.18 1.54  0.08 3.18
3. 1.32 005 2.7 09 -0.04 1.8
20. i.35 008 2.75 0.97 -0.05 1.89
b) shear thickening fluid, n=1.4
2] 0.25 0.75
Nu So 5 5 S, S; S,
0. 16.21 -9.164 23.25 16.21 -9.164 23.25
3. 15.12 -85 21,74 13.58 -6.9 20.24
20. 15.29 -8.6 21.97 14.02 -7.18 20.86
25
z f=025 o
20 & [=0.75 ¢
;3 Nu=5
o0
S 15 /
o 0]
.
£ 10
-4
(&1
2
=
L
.
0 ¥ T
0.4 0.6 0.8 1.0 §.2 1.4

Fig. 6. Thickness swelling with power-law index without
viscous heat dissipation

problem of a nonisothermal Newtonian fluid was in-
vestigated else where [2], we will briefly represent
nonisothermal case of power-law fluids. Briefly
speaking, the result was similar to nonisothermal
Newtonian jet swelling and no significant difference
was found at ali. Table 3 summarizes the results when
Pe is 1 and no heat dissipation occurs. As a
reference, the thickness swelling, S,, is plotted
against power-law index n in Fig. 6 for two different
values of temperature dependence parameter for
viscosity { #=0.25 and 0.75). Although the values
are different, we can see that the general trend is the

The Korean J. of Rheology, Vol. 1, No. 1, 1989
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Table 4. The effect of die geometry for power-law fluids

Die 30° converging 30° diverging

n 06 1. 14 0.6 I 1.4
S, % -1951.02 524 18.68 34.78 66.31
S, % 20.25 35.1440.8 -32.41 -56.36 -105.7
8, % 579 16.31247 -298 0.74 4.13

same as a Newtonian fluid case. For nonisother-
mal swelling problem with viscous heat dissipation,
even though the amount of heat dissipation is dif-
ferent with different values of n, the general trend
is the same as a Newtonian fluid case, so it is not
repeated here. As a reference, some results are
presented in Fig. 7 when Pe=1, Nu=20 and
B =0.25 and 0.75. As seen before, large swelling is
possible for a nonisothermal shear thickning fluid.

To investigate the effect of the die geometry (See
Seo and Wissler [1] for details about the effect of die
geometry on Newtonian annular jet swelling pro-
blems), calculations were done for 30° converging
and diverging dies for power-law fluids. For power-
law fluids, we expect that a higher value of n will
produce large swelling due to large shearing. Table
4 summarizes the results which agrees with our ex-
pectations. A shear thinning fluid even experiences
thickness reduction due to hoop stress and small
shearing. These results were obtained using an ex-
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tended domain -6 <2< 6 to get a converged jet shape.
CONCLUSION

As a part of continuous study, annular extrudate
swell for inelastic viscous fluid was investigated us-
ing a finite element method. Their general behavior
was similar to that of a Newtonian fluid. Thickness
swelling ratio was increased for more shear thicken-
ing fluids in all cases whereas highly shear thinning
fluid showed a contraction rather than swelling. As
we expect, shear rate dependent viscosity does not
give enough thickness swelling comparable to that
of polymeric melts or solutions. Thickness contrac-
tion for a highly shear thinning fluid is deemed
because of problem conditions. Further results for
viscoelastic fluid will be reported elsewhere.

NOMENCLATURE
1]
A

: the first Rivlin-Ericksen tensor
: a constant in the fluid viscosity exponential
term

: the specific heat

D : the symmetric part of the velocity gradient

f . the body force vector per unit mass

F, : free surface position {i=1 for inners surface,
2 for outer surface)

I : identity tensor

Il : the second invarianrt of the rate of defor-
mation tensor

k . the thermal conductivity tensor

k : dimensionaless inner surface radius

L : the velocity gradient tensor

LT : transpose of the velocity gradient tensor

n : power-law index

V  the fluid velocity vector

p : pressure

r : radial axis in the cylindrical coordinate

r! : inner surface radial position

12 . outer surface radial position

R : fluid surface radius

S : the volumetric heat sources

S; : inside diameter swelling ratio
S, : outside diameter swelling ratio
S, ! thickness swelling ratio

T : fluid temperature

T, : reference temperature

T. @ environment termmperature
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: radial direction fluid velocity component
. awial direction fluid velosity component
. vertical axis in cylindriai coordinate

Greek Letter

. dimensionless parameter (=b*(T,-Too))

: rate of strain

. parameter of the fluid viscosity

. the fluid viscosity

. the fluid position where 7, the rate of strain
is zero

: the fluid density

. total strees tensor

: deviatoric stress tensor
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