• Title/Summary/Keyword: Annular Disk

Search Result 38, Processing Time 0.028 seconds

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.417-422
    • /
    • 2001
  • The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  • PDF

Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks (극직교 이방성 회전원판의 진동특성 및 임계속도)

  • Koo, Kyo-Nam;Han, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.

Finite Element Analysis for Time Response of a Flexible Spinning Disk with Translating Misalignment (회전축 정렬불량을 가지는 유연회전디스크의 유한요소법을 이용한 시간응답해석)

  • Heo, Jin-Uk;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1905-1913
    • /
    • 2002
  • Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of the major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von-Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-$\alpha$ time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of the misalign ment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements and it results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

An Experimental Study of Under-Expanded Coaxial, Swirling Jets (부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure (회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석)

  • Seo, Chan-Hee;Jang, Gun-Hee;Lee, Ho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

An Experimental Study of the Supersonic, Dual, Coaxial Jets Impinging on a Flat Plate (평판에 충돌하는 초음속 이중 동축제트에 관한 실험적 연구)

  • Kim Jung-Bae;Lee Jun-Hee;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.739-742
    • /
    • 2002
  • The supersonic, dual, coaxial jet impinging upon a vertical flat plate has recently been applied to a variety of industrial manufacturing processes, since it has several advantages over a conventional supersonic impinging jet. In the present study, experimentation is carried out to investigate the effects of the impinging angle of the annular flow and the design Mach number on the flow field formed over the vertical flat plate. A convergent-divergent nozzle is used to obtain the inner jet flow, its design Mach number being changed between $1.0\;and\;2.0$. The outer annular nozzle has a constant area of the Mach number of 1.0, and its impinging angle of $0^{\circ}\;and\;20^{\circ}$. The primary jet pressure ratio is changed in the range from 6.0 to 10.0 and for the annular flow, the assistant jet pressure ratio is changed from 1.0 to 4.0. The distance between the dual, coaxial nozzle and flat plate is also changed. Detailed pressure measurements are conducted along the axis of the jet and on the flat plate as well. The impinging coaxial Jet flows are visualized using the Schlieren and Shadow optical methods. The results show that the flow field on the plate is not strongly dependent only on the primary and assistant pressure ratios but also the impinging angle of the annular nozzle.

  • PDF

In-plane Natural Vibration Analysis of a Circular Plate by Using finite Element Method (유한요소법을 이용한 원형 평판의 면내 고유진동 해석)

  • Kim, Chang-Boo;Kwak, Dong-Hee
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1083-1087
    • /
    • 2009
  • We present an 1-dimensional annular disk element with which natural vibration of a circular plate can be analyzed accurately and facilely. The natural vibration characteristics of a circular plate with free outer boundary are analyzed by using the presented I-dimensional element. Its results are compared with the results obtained by utilizing 2-dimensional 8-node quadrilateral plane element and cyclic symmetry of the circular plate. And also, by comparing with the theoretical results of previous researchers, the accuracy and facility of the presented I-dimensional element are verified.

  • PDF