• 제목/요약/키워드: Annual Maximum Precipitation

검색결과 127건 처리시간 0.023초

연강수량 및 클러스터 기법에 의한 강수의 지역화 분석(수공) (Regional Analysis of Precipitation using Mean Annual Precipitation and Cluster Methods)

  • 이순혁;맹승진;류경식;지호근
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.397-404
    • /
    • 2000
  • A total of 65 rain gauges with Automatic Weather Station(AWS) were used to regional analysis of precipitation. Nine cluster regions were identified using geographical locations, maximum, mean, standard deviation of 1 day maximum rainfalls, mean annual precipitation and rainfall of rainy season in Korea. The mean annual precipitation, geographical locations, and the synoptic generating mechanisms were used to identify th five climatological homogeneous regions in Korea. Number of final regions by mean annual precipitation and cluster methods divided into five regions in Korea.

  • PDF

강우기록년한이 확률수문량 추정에 미치는 영향에 관한연구 (Effect of Period of Record on Probable Rainfall Prediction)

  • 이근후;한욱동
    • 한국농공학회지
    • /
    • 제23권2호
    • /
    • pp.45-53
    • /
    • 1981
  • Long term precipitation gaging station record (58 years) was analyzed by progressive mean method to compare the estimated effective period of records for computing mean and probable values. Obtained results are as follows: 1. Fifty-eight years precipitation records at Jinju, Gyeong Sang Nam Do was analyzed by double mass analysis method. Result was appeared that the record was consistent with time. 2. The effective period of records for estimating mean values with the departure of 5% or less from the true mean are up to 33 years for annual precipitation, 20 years for annual maximum daily precipitation and 45 years for maximum successive dry days in summer season. 3. To estimate the probable values by Gumbel-Chow method within the departure of 5% level from true value, periods of 51 years, 38 years and 45 years were required for annual precipitation, annual maximum daily precipitation and maximum successive dry days in summer season, respectively.

  • PDF

경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析) (A Studay on the Rainfall and Drought Days in Kyupgpook Area)

  • 서승덕;전국진
    • Current Research on Agriculture and Life Sciences
    • /
    • 제5권
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Power 모형을 이용한 비정상성 확률강수량 산정 (Estimates the Non-Stationary Probable Precipitation Using a Power Model)

  • 김광섭;이기춘;김병권
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.29-39
    • /
    • 2014
  • In this study, we performed a non-stationary frequency analysis using a power model and the model was applied for Seoul, Daegu, Daejeon, Mokpo sites in Korea to estimate the probable precipitation amount at the target years (2020, 2050, 2080). We used the annual maximum precipitation of 24 hours duration of precipitation using data from 1973 to 2009. We compared results to that of non-stationary analyses using the linear and logistic regression. The probable precipitation amounts using linear regression showed very large increase in the long term projection, while the logistic regression resulted in similar amounts for different target years because the logistic function converges before 2020. But the probable precipitation amount for the target years using a power model showed reasonable results suggesting that power model be able to reflect the increase of hydrologic extremes reasonably well.

신평년(1991~2020년)에 기반한 우리나라 최근 기후특성과 변화에 관한 연구 (The Recent Climatic Characteristic and Change in the Republic of Korea based on the New Normals (1991~2020))

  • 최홍준;김정용;최영은;허인혜;이태민;김소정;민숙주;이도영;최다솜;성현민;권재일
    • 대기
    • /
    • 제33권5호
    • /
    • pp.477-492
    • /
    • 2023
  • Based on the new climate normals (1991~2020), annual mean, maximum and minimum temperature is 12.5℃, 18.2℃, and 7.7℃, respectively while annual precipitation is 1,331.7 mm, the annual mean wind speed is 2.0 m s-1, and the relative humidity is 67.8% in the Republic of Korea. Compared to 1981~2010 normal, annual mean temperature increased by 0.2℃, maximum and minimum temperatures increased by 0.3℃, while the amount of precipitation (0.7%) and relative humidity (1.1%) decreased. There was no distinct change in annual mean wind speed. The spatial range of the annual mean temperature in the new normals is large from 7.1 to 16.9℃. Annual precipitation showed a high regional variability, ranging from 787.3 to 2,030.0 mm. The annual mean relative humidity decreased at most weather stations due to the rise in temperature, and the annual mean wind speed did not show any distinct difference between the new and old normals. With the addition of a warmer decade (2011~2020), temperatures all increased consistently and in particular, the increase in the maximum temperature, which had not significantly changed in previous decades, was evident. The increasing trend of annual and summer precipitation by the 2010s has disappeared in the new normals. Among extreme climate indices, MxT30 (Daily maximum temperature ≥ 33℃ days), MnT25 (Daily minimum temperature ≥ 25℃ days), and PH30 (1 hour maximum precipitation ≥ 30 mm days) increased while MnT-10 (Daily minimum temperature < -10℃ days) and W13.9 (Daily maximum wind speed ≥ 13.9 m/s days) decreased at a statistically significant level. It is thought that a detailed study on the different trends of climate elements and extreme climate indices by region should be conducted in the future.

고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정 (Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations)

  • 오태석;문영일
    • 대한토목학회논문집
    • /
    • 제28권5B호
    • /
    • pp.515-524
    • /
    • 2008
  • 합리적인 수공구조물의 설계를 위해서는 안정적인 확률강우량을 산정하는 것은 가장 중요한 과정 중의 하나이다. 확률강우량은 강우관측소에서 관측된 강우자료로부터 각 지속기간에 해당하는 연최대치 강우계열을 구성한 자료의 빈도해석을 통해 산정하게 된다. 연최대치 강우 계열은 대부분 시간강우량 또는 일강우량 자료를 통해 추출하므로, 적절한 고정시간-임의시간 환산계수를 연최대치 강우 계열에 반영할 필요성이 있다. 따라서 본 연구에서는 기상청에서 관측한 37개 지점의 분단위 강우자료와 시간 및 일 단위 강우자료를 활용하여 지속기간별로 고정시간-임의시간 환산계수를 추정하였다. 또한, 추정된 환산계수를 회귀분석하여 지속기간에 따른 고정시간-임의시간 환산계수의 회귀식을 유도하였다. 추정된 환산계수를 연최대치 강우 자료에 반영함으로써 보다 안정적인 확률강우량을 산정하는 기초자료로 활용할 수 있다.

전국 확률강수량 산정을 위한 비정상성 빈도해석 기법의 적용 (Application of a Non-stationary Frequency Analysis Method for Estimating Probable Precipitation in Korea)

  • 김광섭;이기춘
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.141-153
    • /
    • 2012
  • In this study, we estimated probable precipitation amounts at the target year (2020, 2030, 2040) of 55 weather stations in Korea using the 24 hour annual maximum precipitation data from 1973 through 2009 which should be useful for management of agricultural reservoirs. Not only trend tests but also non-stationary tests were performed and non-stationary frequency analysis were conducted to all of 55 sites. Gumbel distribution was chosen and probability weighted moment method was used to estimate model parameters. The behavior of the mean of extreme precipitation data, scale parameter, and location parameter were analyzed. The probable precipitation amount at the target year was estimated by a non-stationary frequency analysis using the linear regression analysis for the mean of extreme precipitation data, scale parameter, and location parameter. Overall results demonstrated that the probable precipitation amounts using the non-stationary frequency analysis were overestimated. There were large increase of the probable precipitation amounts of middle part of Korea and decrease at several sites in Southern part. The non-stationary frequency analysis using a linear model should be applicable to relatively short projection periods.

도시화가 도시지역 강수변화에 미치는 영향 연구 (A Study of the Urbanization Effect on the Precipitation Pattern in Urban Areas)

  • 오태석;안재현;문영일;김종석
    • 한국수자원학회논문집
    • /
    • 제38권10호
    • /
    • pp.885-894
    • /
    • 2005
  • 1970년대 이후, 우리나라는 산업화에 따른 급격한 도시화가 이루어졌다. 본 논문에서는 우리나라의 대표적인 도시인 서울특별시 및 6대 광역시의 1973년부터 2003년까지의 31개년의 강수랑 자료를 이용하여 강수량의 변화에 대하여 분석하였다. 이와 함께 도시화에 따른 강수량의 변동성을 평가하기 위해서 비도시 지역을 선정하였으며 도시 지역의 강수량 변화와 비교하였다. 도시 지역과 비도시 지역의 연강수량, 계절별 강수량, 지속 시간 1시간 및 24시간연최대 강수량에 대해 임의기간에 따른 평균 분석, 경향성 분석, 변동성 분석, 비매개변수적 빈도 해석을 수행한 결과, 도시화 지역에서 비도시화 지역보다 강우 증가율이 더 컸으며, 특히 여름 강수량의 증가량이 두드러졌다.

56년간 한반도 강수 및 풍속의 극값 변화 (The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea)

  • 최의수;문일주
    • 대기
    • /
    • 제18권4호
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

강원 영동지역 봄철 산불대형화 영향 기상요소 분석 (A Study on Meteorological Elements Effecting on Large-scale Forest Fire during Spring Time in Gangwon Young-dong Region)

  • 이시영;김지은
    • 한국방재학회 논문집
    • /
    • 제11권1호
    • /
    • pp.37-43
    • /
    • 2011
  • 봄철은 강수량이 연평균의 13% 정도로 적어 건조한 계절이며, 영동지역에 대형 산불이 많이 발생했던 해는 풍속은 강하고 공중습도가 봄철 평균보다도 낮고 강수량도 상대적으로 적어 더욱 건조했다. 대형산불이 발생했던 날은 평균풍속, 최대풍속, 최대순간풍속이 5.9 m/s, 11.3 m/s, 20.9 m/s로 산불 발생일의 평균값보다 1.8 m/s, 3.0 m/s, 6.9 m/s 크게 나타나, 산불의 대형화와 기상요소는 밀접한 관계를 나타냈다.