• Title/Summary/Keyword: Ann

Search Result 2,352, Processing Time 0.024 seconds

Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller (퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어)

  • 이홍균;이정철;김종관;정동화
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Identification of SMES by ANN and Stability Analysis Included SMES (신경회로망에 의한 SMES 표현과 안정도 해석)

  • Kang, Hyoung-Goo;Kim, Sung-Il;Lim, Jae-Yoon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.717-719
    • /
    • 1996
  • An artificial neural network(ANN) modeling is presented using the Input-output power characteristics of SMES. When using the ANN which functions as a model-free system, network construction and determination of learning parameters are carefully chosen to represent the complicated nonlinear input-output relation from the black-boxed SMES system. The proposed ANN-based SMES model is applied to analyse the power system stability and the simulation results provide the property of this approach.

  • PDF

Economic Load Dispatch Using Modified Lagrangian ANN (Modified Lagrangian 신경망을 이용한 경제 급전)

  • Kim, Y.H.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.133-136
    • /
    • 1996
  • In the paper, an artificial neural network (ANN) approach based on Lagrange multiplier method (Lagrangian ANN) is used to solve an economic load dispatch (ELD) problem. Traditionally ELD problem has one convex cost function as its objective function and nonlinear constraints such as power balance and maximum-minimum limits of real power. In this study, modification is given to the Lagrangian ANN proposed by Gong et all[5] to guarantee the convergence to the optimal solution. Simulation results demonstrate the effectiveness of the proposed method applied to the ELD problem.

  • PDF

ANN-based Maximum Power Point Tracking of PV System using Fuzzy Controller (퍼지 제어기를 이용한 PV 시스템의 ANN 기반 최대전력점 추적)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • A maximum power point tracking (MPPT) algorithm using fuzzy controller was considered. MPPT method was implemented based on the voltage and reference PV voltage value was obtained from Artificial Neural Network (ANN)-model of PV modules. Therefore, measuring only the PV module voltage is adequate for MPPT operation. Fuzzy controller is used to directly control dc-dc buck converter. The simulation results have been used to verify the effectiveness of the algorithm. The proposed method is compared with conventional PO(perturbation & observation), IC(Incremental Conductance) method. The nonlinearity and adaptiveness of fuzzy controller provided good performance under parameter variations such as solar irradiation.

Application of artificial neural networks in the analysis of the continuous contact problem

  • Yaylaci, Ecren Uzun;Oner, Erdal;Yaylaci, Murat;Ozdemir, Mehmet Emin;Abushattal, Ahmad;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for contact pressures and contact lengths under the rigid punch, the initial separation loads, and the initial separation distances of a contact problem. The problem consisted of two elastic infinitely layers (EL) loaded by means of a rigid cylindrical punch and resting on a half-infinite plane (HP). Firstly, the problem was formulated and solved theoretically using the Theory of Elasticity (ET). Secondly, the contact problem was extended based on the ANN. External load, the radius of punch, layer heights, and material properties were created by giving examples of different values used at the training and test stages of ANN. Finally, the accuracy of the trained neural networks for the case was tested using 134 new data, generated via ET solutions to determine the best network model. ANN results were compared with ET results, and well agreements were achieved.

Human Assistance Robot Control by Artificial Neural Network for Accuracy and Safety

  • Zhang, Tao;Nakamura, Masatoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • A new accurate and reliable human-in-the-loop control by artificial neural network (ANN) for human assistance robot was proposed in this paper. The principle of human-in-the-loop control by ANN was explained including the system architecture of human assistance robot control the design of the controller the control process as well as the switching of the different control patterns. Based on the proposed method, the control of meal assistance robot was implemented. In the controller of meal assistance robote a feedforward ANN controller was designed for the accurate position control. For safety a feedback ANN forcefree control was installed in the meal assistance robot. Both controllers have taken fully into account the influence of human arm upon the meal assistance robote and they can be switched smoothly based on the external force induced by the challenged person arm. By the experimental and simulation work of this method for an actual meal assistance robote the effectiveness of the proposed method was verified.

  • PDF

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

Multiple Switches Open-Fault Diagnosis Using ANNs of Two-Step Structure for Three-Phase PWM Converters (Two-Step 구조의 인공신경망을 이용한 3상 PWM 컨버터의 다중 스위치 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.282-283
    • /
    • 2020
  • 3상 컨버터에서 스위치의 개방고장이 발생한 경우 고장 전류에 직류 및 고조파 성분이 발생할 수 있으며, 보호회로에 의한 고장 감지가 어려우므로 주변 기기에 2차 고장이 발생할 수 있다. 단일 및 이중 스위치 개방고장의 경우 21가지 고장 모드가 존재한다. 본 논문에서는 이러한 고장 모드를 진단하기 위해 정지 좌표계 d-q축 전류의 직류 및 고조파 성분을 활용하는 two-step 구조의 ANN(Artificial Neural Network)을 제안한다. 고장 시에 발생된 직류 및 고조파 성분 전류는 ADALINE(Adaptive-Linear Neuron)을 통해 얻는다. 고장 진단의 첫 번째 단계에서는 직류 성분을 기반으로 ANN을 이용하여 고장모드를 6개 영역으로 분류한다. 두 번째 단계에서는 6개의 각 영역에서 직류 성분과 전류의 THD(Total Harmonics Distortion)를 기반으로 ANN을 이용하여 개방고장이 발생한 스위치를 진단한다. 제안된 Two-step 방법으로 고장을 진단하므로써 간단한 구조로 ANN의 설계가 가능하다. 3.7kW급 3상 PWM 컨버터로 실험을 통해 제안된 방법의 효용성을 검증하였다.

  • PDF

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.