• 제목/요약/키워드: Anisotropic thin cylindrical shell

검색결과 5건 처리시간 0.016초

유한요소법에 의한 비등방성 두꺼운 원통형 쉘 및 얇은 원통형 쉘의 비교 해석 (A Comparative Analysis of Anisotropic Thick Cylindrical Shells and Anisotropic Thin Cylindrical Shells by Finite Element Method)

  • 김기동;박원태
    • 복합신소재구조학회 논문집
    • /
    • 제1권3호
    • /
    • pp.17-23
    • /
    • 2010
  • 본 연구는 비등방성 원통형 쉘의 휨문제에 대한 해석 기법을 제시하였다. 비등방성 원통형 쉘의 지배방정식을 해석하기 위해 유한요소법을 사용하였다. 두꺼운 쉘이론과 얇은 쉘이론을 사용하여 쉘의 폭-두께비 및 여러 가지 경계조건을 갖는 비등방성 원통형 쉘에 대한 해석결과를 비교 분석하였다. 본 연구의 수치해석 결과는 비등방성 원통형 쉘의 휨 거동 분석에 기여할 것으로 보인다.

  • PDF

기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성 (Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity)

  • 김기태;박범희;김다진;한상을
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells)

  • 한성천
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.