• Title/Summary/Keyword: Anion sensing

Search Result 24, Processing Time 0.019 seconds

A New Acridine-Imidazolium-Based Cholestane Receptor for Anion Sensing

  • Jadhav, Jyoti Ramesh;Ahmad, Md. Wasi;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2933-2937
    • /
    • 2011
  • A new highly selective receptor (3) based on an acridine-imidazolium functionalized cholestane for anion sensing was designed and synthesized. A binding study of 3 with various anions was assessed by UV-vis and fluorescence spectroscopies in dry CH3CN. Receptor 3 showed the highest selectivity toward hydrogen pyrophosphate (Ka = $1.5{\times}10^4M^{-1}$).

A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor

  • Kim, Young-Hee;Han, Yeon-Kun;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4244-4246
    • /
    • 2011
  • A simple chromogenic system based on 1-fluoride was developed to determine water content in organic solvent. This system utilized deprotonation and protonation of the anion receptor 1. The water content evaluated from this system gave close value to the real water content in the range of 0 to 0.35% in acetonitrile and 0.2 to 0.5% in DMSO. Therefore, protonation and deprotonation phenomenon from the anion receptor by basic anion could be promising method for water sensing system.

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

Investigation of Isomerism in Anthracene-Isothiouronium Salts and Application of these Salts for Anion Sensing

  • Nguyen, Quynh Pham Bao;Kim, Jae-Nyoung;Kim, Taek-Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2093-2097
    • /
    • 2009
  • Novel fluorescent anion chemosensors based on anthracene-isothiouronium derivatives were synthesized. Isomerism due to the intramolecular mobility in these isothiouronium salts was detected by $^1H$ NMR spectroscopy. The effect of the substituent, temperature and solvent on the isomerism was also examined. The anthracene-isothiouronium sensor showed significant fluorescent enhancement upon the addition of various anions such as fluoride, acetate, and dihydrogen phosphate, even in the presence of water.

Chromogenic and Fluorogenic Polymer Systems for Optical Sensing and Patterning

  • Lee, Taek-Seung;Kim, Tae-Hyeon;Kim, Tae-Hoon;Choi, Moon-Soo;Kim, Hyung-Jun;Kwak, Chan-Gyu;Lee, Jung-Hyo;Lee, Chi-Han
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.175-175
    • /
    • 2006
  • Considering the number of chemosensors that have been developed for the sensing of metal ions, only a few chemosensors for fluoride anion have been described in the literature that are based on fluorescent or chromogenic responses. We performed colorimetric anion sensing based on the binding of anion analytes with hydrogen donor group in polymer backbone resulting in naked-eye color change and fluorescent quenching. Our challenges using hydrogen donor moiety was designed effectively are continuing in order for high selectivity and sensitivity for ultimate applications such as fluid solution sensing in biomolecules and gas vapor sensing.

  • PDF

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom;Girault, Hubert H.;Lee, Hye-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1734-1740
    • /
    • 2012
  • Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.