• Title/Summary/Keyword: Anion exchange reaction

Search Result 107, Processing Time 0.026 seconds

Synthesis of Terephthalate Intercalated Zn-Al Layered Double Hydroxides Using AZO Thin Film (AZO박막을 이용한 Terephthalate가 삽입된 Zn-Al 층상 이중 수산화물의 합성)

  • Park, Ki-Tae;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.161-165
    • /
    • 2017
  • In this paper, synthesis of terephthalate intercalated Zn-Al: Layered double hydroxides (LDHs) was studied. We designed freestanding Zn-Al: carbonate LDH nanosheets for a facile exchange technique. The as-prepared Zn-Al carbonate LDHs were converted to terephthalate intercalated Zn-Al:LDHs by ion exchange method. Initially, Al-doped ZnO (AZO) thin films were deposited on p-Si (001) by facing target sputtering. For synthesis of free standing carbonate Zn-Al:LDH, we dipped the AZO thin film in naturally carbonated water for 3 hours. Further, Zn-Al: carbonate LDH nanosheets were immersed in terepthalic acid (TA) solution. The ion exchange phenomena in the terephthalate assisted Zn-Al:LDH were confirmed using FT-IR analysis. The crystal structure of terephthalate intercalated Zn-Al:LDH was investigated by XRD pattern analysis with different mole concentrations of TA solution and reaction times. The optimal conditions for intercalation of terephthalate from carbonated Zn-Al LDH were established using 0.3 M aqueous solution of TA for 24 hours.

Synthesis of Bead Type lon Exchangers and Selective Adsorption Properties of Carbonyl Compounds in Cigarette Mainstream Smoke (비드형 이온교환체의 합성 및 담배 주류연 중 카보닐 화합물의 선택 흡착 특성)

  • Lee, John-Tae;Park, Jin-Won;Rhee, Moon-Soo;Hwang, Keon-Joong;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 2005
  • To use the filter materials for reduction of carbonyl compounds in cigarette mainstream smoke, the bead type cation and anion exchangers were synthesized by the suspension polymerization of GMA and DVB followed by the subsequent functionalization with sodium sulfite and diethylamine, respectively. FT-IR/ATR was used to characterize functionalized copolymer formation by sulfonation and amination, and the morphology change of ion exchangers according to the adsorption of cigarette mainstream smoke were observed by SEM. Ion exchange capacity, functionalization yield and adsorption properties of carbonyl compounds in cigarette mainstream smoke were investigated. The highest functionalization yields and ion exchange capacity were obtained at 5 wt% DVB content in co-monomer. The adsorption amount of carbonyl compounds in cigarette mainstream smoke of anion exchanger was higher than that of cation exchanger because of its electron delocalization in carbonyl group. The adsorption efficiency was increased in the presence of moisture. This results indicated that the anion exchanger was applicable for cigarette filter material because of its large ion exchange capacity and rapid ion exchange reaction.

Biochemical Properties of a Chitin-Binding Class III Chitinase in Pumpkin Leaves

  • Lee, Kyun-Oh;Kim, Min-Gab;Jang, Ho-Hee;Lee, Ji-Yeun;Kim, Sun-Chang;Lee, Sang-Yeol
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.541-546
    • /
    • 1999
  • When we compared the chitinase activity of various plant sources using colorimetric or active gel-staining assay methods, the specific activity of pumpkin leaves was the highest among the samples we analyzed. The highly active chitinase from pumpkin leaves (designated PL-ChtIII) was purified to homogeneity using affinity chitin gel and HPLC Mono-Q anion-exchange cloumn chromatographies. In contrast to other members of the class III chitinase family, PL-ChtIII showed a strong binding affinity to the regenerated chitin gel column. The apparent molecular weight of PL-ChtIII was estimated to be 29 kDa on SDS-PAGE gel, while its optimum pH and temperature were shown to be pH 6.0 and $60^{\circ}C$, respectively. Analyzing the reaction products of PL-ChtIII with swollen chitin as substrate, the dimer and tetramer of N-acetylglucosamine were produced as major products in the first hour of the enzymatic reaction along with a small amount of monomers and trimers. As the reaction time increased, dimeric N-acetylglucosamine became the predominant form of reaction product.

  • PDF

Photo-induced Isomerization and Polymerization of (Z,Z)-Muconate Anion in the Gallery Space of [LiAl2(OH)6]+ Layers

  • Rhee, Seog-Woo;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Photoreaction of guest organic anions in layered organic-inorganic hybrid materials was investigated. The layered hybrids were synthesized by an anion-exchange reaction of $[LiAl_2(OH)_6]Cl{\cdot}yH_2O$ layered double hydroxide with aqueous (Z,Z)- and (E,E)-muconates under inert atmospheric condition, to give new organicinorganic hybrids of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$ and $[LiAl_2(OH)_6]_2[(E,E)-C_6H_4O_4]{\cdot}H_2O$, respectively. The basal spacings calculated by XRPD of intercalates indicate that muconate anions have almost vertical arrangements against the host $[LiAl_2(OH)_6]^+$ lattices in the interlayer of organic-inorganic hybrid materials. When UV light was irradiated on the suspension of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$, the (Z,Z)-muconate anions of the gallery space of hybrids were polymerized in the aqueous media while it was isomerized into more stable (E,E)-muconate in the methanollic suspension in the presence of catalytic amount of molecular iodine. All the products were characterized using elemental analysis, TGA, XRPD, FT-IR, $^1H$ NMR and $^{13}C$ CP-MAS NMR.

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

The investigation of As(V) removal mechanism using monosulfate (($Ca_4Al_2O_6(SO_4){\cdot}12H_2O$) and its characteristics (Monosulfate ($Ca_4Al_2O_6(SO_4){\cdot}12H_2O$)의 특성 및 수중 5가 비소 제거기작 규명)

  • Kim, K.B.;Shim, J.H.;Choi, W.H.;Park, J.Y.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.149-157
    • /
    • 2012
  • Experiments for As(V) removal using synthesized $Ca{\cdot}Al$-monosulfate was performed from the water contaminated with arsenate. Monosulfate is known as LDHs (Layered Double Hydroxides) which is one of the anionic clay minerals. Monosulfate was synthesized mixing $C_3A$ (tricalcium aluminate), gypsum (calcium sulfate), and water with an intercalation method. The product form the synthesis was characterized by FE-SEM, WDXRF, PXRD, and FT-IR. Experiments with different doses of monosulfate were carried out for kinetic. As a result of experiment, the concentration of As(V) was reduced from 0.67 mM to 0.19 mM (0.67mM of monosulfate) and 0.178 mM (1.34 mM of monosulfate). The concentration of sulfate was increased with As(V) decrease. The result of PXRD showed that the d-spacing of inter layer ($d_{003}$ peak) was shifted from 8.927 ${\AA}$ to 8.095 ${\AA}$ because the sulfate in the inter layer of monosulfate was exchanged arsenate with water molecules bonded. From the FT-IR results, a new single band (800 cm-1) was observed after the reaction of monosulfate and As(V). The arsenic removal can be regarded as anion exchange mechanism that is one of the characteristics of LDHs from the results of PXRD and FT-IR analysis.

Analysis of Low-level ${\alpha}$-D-glucose-1-phosphate in Thermophilic Enzyme Reaction Mixuture Using High pH Anion-exchange Chromatograph (고성능 액체 크로마토그래프를 이용한 내열성 효소반응 산물인 ${\alpha}$-D-glucose-1-phosphate의 저농도 분석)

  • 신현재;신영숙;이대실
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.384-388
    • /
    • 1999
  • We have used high pH anion-exchange chromatography to analyze low level (below $20{\mu}M$) $\alpha$-D-glucose-1-phosphate (G-1-P) that can be used as a cytostatic compound, an antibiotic, and immunosuppressive drug. Our chromatographic method afforded excellent peak resolution and seletivity for glucose-6-phosphate and various maltooligosaccharides as well as G-1-P. The pulsed amperometric detector yielded linear response on G-1-P ranging from 2 - $20{\mu}M$, giving slope of $4.8{\times}10^4$(peak area/${\mu}M$). The detection limit was $2{\mu}M$. This method was applied to the purification of thermophilic $\alpha$-glucan phosphorylase from Thermus caldophilus. The technique will be extremely useful in future studies concerning carbohydrate metabolism in living organisms.

  • PDF

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.