• Title/Summary/Keyword: Animal Compost

Search Result 210, Processing Time 0.037 seconds

Soil Organic Matter Fractions in Upland Soil under Successive Application of Animal Manure Composts (밭 토양에서 가축분퇴비 연용시 토양 유기물 Fraction)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Yong-Bok;Lee, Kee-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.400-404
    • /
    • 2007
  • The objective of this study was to analyze change of soil organic matter fraction from a range of livestock manure compost that differed in their total C, N content and C quality, to gain a better understanding of their influence on soil organic matter. The chicken (CHM), pig (PIM), and cow (COM) manure-based composts, and manure-sawdust-based composts (CHMS, PIMS, and COMS) were applied annually to the upland soil with $3Mg\;C\;ha^{-1}$ during 4 years. After 4 years, the soil carbon content was increased to 25-30 and 40% for manure-based compost and manure-sawdust-based compost compared to control. In the all treatments, the content of light fraction C was sharply increased after second year. The content of light fraction C in the manure-sawdust-based compost was higher than in the manure-based compost. By contrast, the content of heavy fraction C was higher in the manure-based compost than in the manure-sawdust-based compost. These results indicate that stabilization of carbon applied from microbiological process was faster in the manure-based compost than in the manure-sawdust-based compost.

Bacterial Communities Developing during Composting Processes in Animal Manure Treatment Facilities

  • Yamamoto, Nozomi;Otawa, Kenichi;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.900-905
    • /
    • 2009
  • We analyzed succession of the bacterial communities during composting of animal manure in three individual facilities. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) targeting for the bacterial 16S rRNA gene were used to clarify the changes of bacterial community throughout each composting process. Our study revealed that the bacterial community structures differed during the composting process. The bacterial community in composting of facility A showed little change throughout the process. In the compost sample from facility B, its community had a small shift as the temperature increased. In compost from facility C, the temperature dynamically changed; it was shown that various bacterial communities appeared and disappeared as follows: in the initial phase, the members of phylum Bacteroidetes dominated; in the thermophilic phase, some bacteria belonging to phylum Firmicutes increased; towards the end, the community structure consisted of three phyla, Bacteroidetes, Firmicutes, and Proteobacteria. This study provides some information about the bacterial community actually present in field-scale composting with animal manure.

Investigation of Hanwoo manure management and estimation of nutrient loading coefficients on land application

  • Won, Seunggun;You, Byung-Gu;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.57 no.5
    • /
    • pp.20.1-20.8
    • /
    • 2015
  • Background: In order to prepare for the regulation about the limit of manure production, the status of manure management and the amount of nutrients in the compost discharged from Hanwoo breeding farm shall be known. This study aimed to find the practical amount of nutrients (volatile solids, VS; total nitrogen, T-N; total phosphorus, T-P) in manure, and compost samples collected from 40 Hanwoo breeding farms and the loss of the nutrients was calculated during the composting period, which supports to develop nutrient loading coefficients (NLCs) for each nutrient. Results: Although the addition of bedding materials for composting caused the increase of the VS amount before composting, the comparison of VS, N, and P amounts in between manure and compost showed the lower VS by 4 % as well as T-N and T-P amounts by 69 and 40 %, respectively, of which values were corresponded with the NLCs of 0.96, 0.31, and 0.60 for VS, N, and P, respectively, based on the questionnaire, and sample analyses. Considering with the environmental impacts including land application from Hanwoo manure, P loss should be zero before and after composting. In this regard, nitrogen loss of 50 % occurs and VS was increased by 30 %. In addition, feasible cases for the calculations based on the notification from Ministry of Environment were compared with this study. Conclusions: The development of NLCs from Hanwoo manure in this study implies that the loss of nutrients in manure occurs during the composting or storing period. The mass balances of N and P from livestock manure to land application may be overestimated over the practical values. It is necessary to build up the database about each livestock category other than Hanwoo.

Characteristics of compost produced in food waste processing facility (음식물류 폐기물 퇴비화시설에서 생산된 퇴비품질 특성)

  • Lee, Chang-hoon;Park, Seong-jin;Kim, Myeong-sook;Yun, Sun-gang;Ko, Byong-gu;Lee, Deog-bae;Kim, Sung-chul;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.177-181
    • /
    • 2015
  • Food waste has been widely considered as a recycling resource to be applied to agricultural lands due to the effects of organic matter and nutrient for plant productivity. but the maturity and salt concentration in the compost produced from food waste processing facilities should be considered firstly, which was little information on compost quality produced from food waste treatment facility. In this study, we examined actual situation of food waste processing facility on the composting of food waste and evaluated the characteristics of composts produced from food waste processing facilities. The quality of composts was analyzed on the basis of the criteria of fertilizer processing manual. The 46% of food waste treatment facility registered composting produced actually the compost mixed with food waste or animal waste. The compost maturity and salt concentration as indicators of the quality of compost were not met 46.8% of composts collected from food waste processing facilities to the criteria of fertilizer processing manual. Also, 15.6%(moisture) were not satisfied with the criteria. In conclusion, the compost produced from food waste processing facilities is firstly required with better compost maturity and reduced salt concentration in order to use to agricultural lands as an amendment.

Effect of Sawdust Mixing Ratio on Composting of Animal Cadaver Residue Using Rendering Treatment Method (톱밥 혼합비율이 랜더링 처리 가축사체의 퇴비화에 미치는 영향)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Seo, Young-Jin;Lee, Sang-Gyu;Sung, Hwan-Hoo;Heo, Jong-Soo;Kang, Seog-Jin;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.404-409
    • /
    • 2012
  • In order to obtain optimum mixing conditions with animal cadaver residue and sawdust for composting using rendering treatment method for agricultural recycling, changes of chemical characteristics and compost quality after composting were investigated. Initial mixing ratios with animal cadaver residue and sawdust were adjusted 100 : 0, 50 : 50 and 30 : 70. Temperature, pH, contents of ammonia and carbon dioxide were rapidly increased in 3 days and then decreased with time. Organic matter content was similar in all conditions. In mixing ratio of 50 : 50, the compost quality was satisfied with compost depending on official standard for product fertilizer. Thus, the optimum mixing ratio of animal cadaver residue and sawdust were 50 : 50.

Technique for Using Fly Ash as a Bedding Materials at Livestock House (석탄회의 축사 깔짚 이용기술)

  • 고영두;김재황;김두환;고병두;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • This study was carried out to improve utilization of substitute fly-ash in bedding material of animal waste treatments. The amount used of fly-ash used in a pigpen or beef stall was 50% lower than that of existing bedding material of animal waste treatments. From the results, substitution effect of fly-ash put over the floor of the stable became much better. Effects of processed fly ash as a spread straw decreased ammonia(NH3) and Hydrogensulfide (H2S) gas at beef stall, but there was no benefit of replacement terms. Effect of processed fly ash as a spread straw increased 4∼5 times replacement terms more than control NH3 and H2S gas was decreased. A lot of maggots and porasites were grown at sawdust pig farm, but fly ash inhibited to grow maggots and paraeters. In conclusion, as substituting fly-ash for 5% sawdust(DM basis) in making animal waste into a compost with fly ash, we can reduce the sawdust purchasing costs and produce the high quality of a compost, especially a pollutant as NH3 and H2S gas, etc. from the process of biodegradation, and as substituting fly-ash(1,540 won per ton ; can be extended the replacement period of spreading straw approximatively 4∼5 times) for sawdusts(111,000 won per ton) will increase a real income in livestock house.

Effect of Pile Temperature Control on Changes of Physicochemical Parameters of Composted Poultry Waste (계분의 콤포스터 처리시 내부온도 조절이 생산물의 물리·화학적 성상에 미치는 영향)

  • Kwak, Wansup;Kim, Taegyu;Kim, Changwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.39-51
    • /
    • 1994
  • When broiler litter was composted under the control of peak temperature of piles(uncontrolled, controled below $70^{\circ}C$ and below $60^{\circ}C$), changes of physical and chemical parameters were determined throughout the processing period. Broiler litter was composted in each of three $1.0{\times}1.0{\times}1.2m$ dimensional facilities for 8 weeks. After 5 to 6 weeks of composting, broiler litter was converted into the final compost with no ammonia odour, rice hull size of particle, and faint brown color. Central temperature of piles reached to the peak(about $69{\sim}70^{\circ}C$) within 3 to 4 days after composting and gradually decreased thereafter. The final product contained 26.5% of moisture, 9.0~9.1 of pH, and 14.0~14.3 of C/N ratio. The increase of C/N ratio with processing resulted from the considerable loss of N. The total wet weight of the final composts was an average of 38.3% of the initial weight, the dry weight of those 64.1%, and the organic matter weight of those 34.8%. Treatments of central temperature of composts did not affect changes of moisture, pH, C/N ratio, total wet weight, total dry weight, and total organic matter weight. In general, composted broiler litter was converted into the final product with little change in physical and chemical parameters after 5 to 6 weeks of processing. Nitrogen losses during the composting should be prevented for the improvement of the composting efficiency of broiler litter.

  • PDF

Field Investigation of Environment Parameter in Aerobic Composting for Pig Slurry at a Scraper System (스크레파 축사에서 배출되는 돈분뇨슬러리 호기성 퇴비화의 환경요인 현장조사)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.183-192
    • /
    • 2008
  • This study was carried out to investigate the temperature, water balance, evaporation and physicochemical properties during the composting with pig slurry at a scraper system. The pig slurry was composted on farm trial using continuous aeration with turning machine for 5 month. A compost facility of rectangular concrete bin with dimension of 53 m (length) ${\times}$ 4.6 m (width) ${\times}$ 2 m (height) was bedded with sawdust. The environmental parameters were monitored in period of 5 months. The results were as follows ; 1. During the composting period, the temperature was varied in the range $50{\sim}70^{\circ}C$. The temperature of compost pile was highest in middle layer and lowest in under layer. Temperature difference between middle and under area of compost pile was $5{\sim}20^{\circ}C$. 2. The water content of compost pile varied $50{\sim}68%$. In the period of 50% of water content of compost pile, the temperature of compost was $20{\sim}30^{\circ}C$ and was not successfully composted. 3. In this study, total evaporation was 90% during composting. The amount of slurry per $1m^3$ sawdust by this method was $3.16m^3$ without treatment of effluent output. 4. The chemical properties of produced compost was high, but suitable for plant growth. Concentration of T-N, T-C in the final compost were 1.62, 34%, respectively.

  • PDF

Compost Production using Vegetable Waste and Spent Oak Mushroom Substrate (SMS) (채소 부산물과 표고 수확후 배지를 활용한 퇴비 제조방법)

  • Kim, Eui-Yeong;Kook, Seung-Woo;Yuk, Hwa Jung;Yoon, Min Ho;Kim, Sung-Chul
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 2016
  • Spent mushroom substrate (SMS) has generally been used for the manufacture of animal feed and production of bio fuel. Limited research has been conducted in the utilization of SMS as a co-material for composting. Therefore, the main purpose of this study was to evaluate the feasibility of composting vegetable waste mixed with various ratios of SMS (30, 40, and 50%). The results showed that the C/N ratio decreased when both sawdust (from 22.0~28.8 to 17.7~20.4) and SMS (from 18.5~19.5 to 12.7~16.8) were applied for composing, owing to increased contents of nitrogen. A maturity test conducted using mechanical (Solvita) and germination tests revealed that both sawdust (92.0~101.9%) and SMS (87.8~89.2%) satisfied a criteria of maturity standard (70%). A correlation analysis between compost maturity and its chemical properties revealed that the C/N ratio and pH were the most dominant parameters for compost maturity. Overall, SMS could be utilized as a compost material and especially, vegetable waste mixed with SMS could provide sufficient nutrients for crop growth.

Nutrient production from Korean poultry and loading estimations for cropland

  • Won, Seunggun;Ahmed, Naveed;You, Byung-Gu;Shim, Soomin;Kim, Seung-Su;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.60 no.2
    • /
    • pp.3.1-3.9
    • /
    • 2018
  • Background: Poultry breeding has increased by 306% in Korea, inevitably increasing the production of manure which may contribute to environmental pollution. The nutrients (NP) in the manure are essential for crop cultivation and soil fertility when applied as compost. Excess nutrients from manure can be accumulated on the land and can lead to eutrophication. Therefore, a nutrient load on the finite land should be calculated. Methods: This study calculates the nutrient production from Korean poultry by investigating 11 broiler and 16 laying hen farms. The broiler manure was composted using deep litter composting while for layer deep litter composting, drying, and simple static pile were in practice. The effect of weight reduction and storing period during composting was checked. Three weight reduction cases of compost were constructed to calculate nutrient loading coefficients (NLCs) using data from; i) farm investigation, ii) theoretical P changes (${\Delta}P=0$), and iii) dry basis. Results: During farm investigation of broiler and layer with deep litter composting, there was a 68 and 21% N loss whereas 77 and 33% P loss was found, respectively. In case of layer composting, a loss of 10-56% N and a 52% P loss was observed. Drying manure increased the P concentrations therefore NLCs calculated using dry basis that showed quite higher reductions (67% N; 53% P). Nutrient loss from farm investigation was much higher than reported by Korean Ministry of Environment (ME). Conclusions: Nutrients in manure are decreased when undergo storing or composting process due to microbial action, drying, and leaching. The nutrient load applied to soil is less than the fresh manure, hence the livestock manure management and conservation of environment would be facilitated.