• Title/Summary/Keyword: Angular multiplexing

Search Result 38, Processing Time 0.031 seconds

Angular Division Multiplexing for Multichannel Optical Fiber Communication Systems (광섬유 다중통신 시스템을 위한 각도분할 방식)

  • 허선종;김성일;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.4
    • /
    • pp.164-171
    • /
    • 1983
  • In this paper, angular division multiplexing of the optical multiplexing technique for transmitting several channels using a relatively short step-index fiber is described. Mode coupling and the output power distributionin the fiber for the plane wave excitations is calculated and the crosstalk level determination of the system is proposed. In the presence of the mode coupling, the pulse width in terms of the fiber's length and input condition is calculated in the slab waveguide and the fiber. For the input angles (

  • PDF

Digital holographic memory system using angular multiplexing (각도 다중화를 이용한 디지털 홀로그램의 저장 및 재생에 관한 연구)

  • Kim, Young-Hoon;Yang, Byung-Choon;Lee, Byoung-Ho;Park, Joo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.984-986
    • /
    • 1998
  • The volume holographic memory system suffers from the crosstalk noise. We study use of error correction coding(ECC) and angular multiplexing for digital holographic memory(DHM) system. The analog image is encoded to binary images by ECC. Binary images are stored using angular multiplexing in DHM. The retrieved binary images are decoded by ECC. The bit error-rate is measured for perspective of the DHM system.

  • PDF

A Study on the Prevention of Smartcard Forgery and Alteration Using Angular Multiplexing and Private Key Multiplexing based on Optical Encryption (영상 암호화 기반에서의 각다중화 및 암호키 다중화 기법을 이용한 스마트카드 위 .변조 방지에 관한 연구)

  • 장홍종;이성은;이정현
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.3
    • /
    • pp.63-69
    • /
    • 2001
  • Smartcard is highlighted as infrastructure that has an excellent security for executing functions such as user authentication, access control, information storage and control, and its market is expanding rapidly. But possibilities of forgery and alteration by hacking are increasing as well. This paper proposes a method to prevent card forgery and alteration using angular multiplexing and private key multiplexing method on optical encryption, and proposed a Public Key Infrastructure(PKI)-based authentication system combined with One-Time Password (OTP) for verification of forgery and alteration .

Multiplexing methods of volume holograms using fiber speckle patterns

  • Kang, Yong-Hoon;Kim, Ki-Hyun;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.38-41
    • /
    • 1998
  • The method of using fiber speckle patterns can be applied to the multiplexing of volume holograms. Fiber speckle patterns enable various multiplexing techniques such as shift, angular, and mode-scrambling methods Hybrid methods involving more than one multiplexing technique are also possible. Some images are stored and retrieved with one or two of multiplexing methods, and the experimental results are discussed.

Holographic recording system by combined use of rotational, angular, and spatial multiplexing method (회전, 각, 그리고 공간 다중화 방법을 결합사용한 홀로그램 기록 시스템)

  • 신동학;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.199-204
    • /
    • 1998
  • To increase the storage density in hologram recording, a simple scheme to obtain rotational, angular and spatial multiplexing efficiently at the same time is proposed and experimented. Both rotational multiplexing and angular multiplexing are obtained by controlling the reference beam directly by use of a pair of wedge prisms, while spatial multiplexing is obtained by shifting the recording medium in the recording plane. It is possible to get both an acute-angle geometry, in which the angle between the signal and reference beams is less than 90$^{\circ}$, and a 90$^{\circ}$ geometry, in which the angle is approximately 90$^{\circ}$. In experiment, 180 holograms were multiplexed with an acute-angle geometry where a photopolymer was used for the recording medium, and 147 holograms with 90$^{\circ}$ geometry where a Fe-doped LiNbO$_3$ crystal was used. The proposed scheme makes it easy it easy to realize a practical holographic memory system by simplifying the control of three complex mechanical motions that are necessary for the three multiplexing techniques.

  • PDF

Microwave Orbital Angular Momentum Mode Generation and Multiplexing Using a Waveguide Butler Matrix

  • Lee, Wangjoo;Hong, Ju Yeon;Kang, Min Soo;Kim, Bong Su;Kim, Kwang Seon;Byun, Woo Jin;Song, Myung Sun;Cho, Yong Heui
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.336-344
    • /
    • 2017
  • In this paper, we propose a convenient microwave orbital angular momentum (OAM) mode generation and multiplexing method operating in the 18 GHz frequency band, based on a $2{\times}2$ uniform circular array and a $4{\times}4$ Butler matrix. The three OAM modes -1, 0, and +1 were generated and verified using spatial S-parameter measurements; the measured back-to-back mode isolation was greater than 17 dB in the full 17 GHz to 19 GHz range. However, the radiated OAM beam centers were slightly dislocated and varied with both frequency and the mode index, because of the non-ideal characteristics of the Butler matrix. This resulted in mode isolation degradation and transmission distance limitations.

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.