• 제목/요약/키워드: Angular kinematic

검색결과 173건 처리시간 0.023초

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

구형 인볼류트 베벨기어쌍의 각속도비에 관한 해석적 연구 (An Analytical Investigation on the Ratio of Angular Velocity in Spherical Involute Bevel Gearsets)

  • Park, N.G.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.40-45
    • /
    • 1995
  • The kinematical relationship of bevel gearsets lies at the root of the gear design. As the demand on precision bevel gears is increased in the related industries, the kinematic analysis of a pair of sperical involute bevel gears needs to be exactly evaluated for the computer aided design. Pitch cone angles of bevel gearsets have been calculated under the assumption that the geared system is equivalent to a coned roller system without slipping. But this kinematical model involves some errors in the value of the ratio of angular velocity. In this paper, the ratio of the angular velocity is exactly derived, based on the perfect involute tooth surface. Four nonlinear equations representing the kinematical relationships are numerically solved to obtain the pitch and base cone angles. The ratios of angular volocities according to pressure and shaft angles are calculated and compared with those of the approximate gear model.

  • PDF

관절의 수동탄성특성을 이용한 족부의 생체역학적 해석 (Biomechanical Analysis of the Human Foot by Using Passive Elastic Characteristics of Joints)

  • 김시열;최현기
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.197-204
    • /
    • 2004
  • In this study we presented kinematic and kinetic data of foot joints using approximated equations and partial plantar pressure during gait. The maximum angular displacements of each tarsometatarsal joint were found to range from 4$^{\circ}$to 7$^{\circ}$ and the maximum moments were from 200Nㆍcm to 1500Nㆍcm. It was relatively wide distribution. Foot kinematic data calculated from the approximated equations, which were represented by the correlation between moment and angular displacement, and the data from motion analysis were similar. We found that the movements of foot joint were mainly decided by the passive characteristics of the joint when ground reaction force acts. The method of kinematic and kinetic analysis using approximated equations which is presented in this study is considered useful to describe the movements of foot joints in gait simulations.

테니스 포핸드 스트로크 동안 스탠스 조건에 따른 3차원 운동학적 분석 (3-D Kinematic Analysis According to Stance Patterns During Forehand Stroke in Tennis)

  • 최지영
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.105-115
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open, close, and square stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined. In conclusion, the first hypothesis, "In three dimensional maximum linear velocity of racket head would be significant difference among the stance patterns during forehand stroke in tennis" was rejected. The second hypothesis, "In three dimensional anatomical angular displacement of trunk would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that the internal-external rotation showed most important role among the three dimensional anatomical angular displacement of trunk The third hypothesis, "In three dimensional anatomical angular displacement of upperlimb would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. Flexion-extension and internal-external rotation the open stance showed the largest angular displacement and is follwed by square stance and closed stance. The fourth hypothesis, "In three dimensional anatomical angular velocity of upperlimb would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that X-axis angular velocity and Z-axis angular velocity the square stance showed the largest angular velocity of the trunk and X-axis angular velocity and Y-axis angular velocity the closed stance showed the largest angular velocity of the shoulder joint.

케이싱 오실레이터의 기구학적 조작성 해석 (Kinematic Manipulability Analysis of the Casing Oscillator)

  • 남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

속도분리를 이용한 여유자유도 로봇의 최적 경로계획 (An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

국소 진동자극이 편마비 뇌졸중 환자의 팔 뻗기 수행에 미치는 영향에 대한 운동학적 분석 (Kinematic Analysis in Reaching Depending on the Localized Vibration Duration in Persons With Hemiparetic Stroke)

  • 유은영;박지혁;권재성;조상윤;이보미;김영조;김재남;김선호
    • 재활치료과학
    • /
    • 제7권3호
    • /
    • pp.79-88
    • /
    • 2018
  • 목적 : 본 연구의 목적은 뇌졸중 환자를 대상으로 환측 상지에 진동자극을 적용했을 때, 팔 뻗기 수행에서 나타나는 팔꿈치 움직임의 운동학적 변화를 관찰하기 위함이다. 연구방법 : 연구 설계는 단일집단 교차실험설계(one-group cross-over trial design)를 사용하였으며, 10명의 만성 뇌졸중 환자를 대상으로 하였다. 대상자의 환측 위팔두갈래근(biceps brachii)에 국소 진동자극을 5분, 10분, 20분 동안 무작위로 70Hz로 적용한 후, 3차원 동작분석 시스템을 통해 팔 뻗기 수행의 운동학적 움직임을 분석하였다. 종속변수에는 팔꿈치 움직임에서 나타나는 최대 각 속도, 최대 각속도까지의 시간, 움직임 단위를 포함하였다. 결과 : 팔 뻗기를 수행함에 있어서 팔꿈치의 움직임은 20분 동안 국소 진동자극을 적용하였을 때 보다 빠르고 부드러워졌으며, 효율적으로 나타났다. 팔꿈치 움직임의 최대 각속도는 증가하였고(p<0.05), 최대 각속도까지의 시간과 운동단위는 유의하게 감소하였다(p<0.05). 결론 : 국소 진동자극은 편마비 뇌졸중 환자가 팔 뻗기 움직임을 수행함에 있어 발생하는 운동학적 구성요소를 향상시킬 수 있는 효과적인 방법일 될 수 있다.

테니스 한손 백핸드 스트로크와 양손 백핸드 스트로크 동작의 3차원 운동학적 비교 분석 (3-D Kinematic comparison of One Hand Backhand Stroke and Two Hand Backhand Stroke in Tennis)

  • 최지영;신제민
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.85-95
    • /
    • 2005
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle during One Hand Backhand Stroke and Two Hand Backhand in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head direction were defined. 1. In three dimensional maximum linear velocity of racket head the X axis and Y axis(horizontal direction) showed $-11.04{\pm}2.69m/sec$, $-9.31{\pm}0.49m/sec$ before impact, the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball. It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. The stance distance between right foot and left foot was mean $75.4{\pm}5.86cm$ during one hand backhand stroke and $72.6{\pm}4.67cm$ during two hand backhand stroke. 2. The three dimensional anatomical angular displacement of trunk in interna rotation-external rotation showed most important role in backhand stroke. and is follwed by flexion-extension. the three dimensional anatomical angular displacement of trunk did not show significant difference between one hand backhand stroke and two hand backhand stroke but the three dimensional anatomical angular displacement of trunk was bigger than one hand backhand stroke. 3. while backhand stroke, the flexion-extension and adduction-abduction of right shoulder joint showed significant different between one hand backhand stroke and two hand backhand stroke. the three dimensional anatomical angular displacement of right shoulder joint showed more flex and abduct in one hand backhand stroke. 4. The three dimensional anatomical angular displacement of left shoulder showed flexion, adduction, and external rotation at impact. after impact, The angular displacement as adduction-abduction of left shoulder changed motion direction as abduction. angular displacement of left shoulder as flexion-extension showed bigger than the right shoulder.

여자 필드하키 페널티코너 전문 슈터 양성을 위한 Drag Flick 슈팅 동작의 운동학적 분석: 사례 연구 (Kinematic Analysis of Drag Flick Shooting Motion for Training Shooters Specializing in Penalty Corners in Women's Field Hockey: A Case Study)

  • Park, Jongchul;Byun, Kyungseok;Kim, Eonho
    • 한국운동역학회지
    • /
    • 제29권2호
    • /
    • pp.43-51
    • /
    • 2019
  • Objective: This study aims to propose an efficient technical model through a kinematic analysis of field hockey drag flick shooting motion in laboratory situations and game situations and to build up the basic data on drag flick shooting technique through a comparative analysis of a Korean specialized shooter and specialized shooters of competing Asian countries. Method: This study selected one Korean female national specialized shooter and seven specialized shooters of competing countries, China, Japan, India, and Malaysia, who participated in the 2018 Asian Hockey Champions Trophy as research subjects. In exercise situations, a 3-D motion analysis utilizing an infrared camera was conducted, while in game situations, an image-based 3-D motion analysis utilizing a digital camera was conducted. Results: The Korean specialized shooter had smaller changes in the angles of the trunk and the stick in game situations than in exercise situations. She had a high angular velocity of the trunk and the stick head, and the maximum speed of the ball was high. The Korean specialized shooter had the maximum angular velocity of the trunk higher than the specialized shooters of the competing countries did, and the angular velocity of the stick head and the maximum speed of the ball were in the average level. Conclusion: As for drag flick shooting in game situations, changes in the angle of the trunk and the stick were small, and the angular velocity was high due to the pressure that the shooters should perform the motion fast with the defenders' interruptions, and this high angular velocity of the trunk and the stick head affected the movement of the ball. Thus, the maximum speed of the ball was higher in game situations than in exercise situations. The Korean specialized shooter had the maximum angular velocity higher than the specialized shooters of the competing countries did; however, the maximum speed of the ball was average, and it turned out that the maximum speed of the ball was associated with the angular velocity of the stick head in P3. Therefore, Korean specialized shooters need complementary training for a change to the torque of the stick head, using the strong torque of the trunk.

Numerical Kinematic Analysis of the Standard Macpherson Motor-Vehicle Suspension System

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1961-1968
    • /
    • 2003
  • In this paper, an efficient numerical algorithm for the kinematic analysis of the standard MacPherson suspension system is presented. The kinematic analysis of the suspension mechanism is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the kinematic joints. Geometric constraints that fix the distances between the points belonging to the same rigid link are introduced. The nonlinear constraint equations are solved by iterative numerical methods. The corresponding linear equations of the velocity and acceleration are solved to yield the velocities and accelerations of the unknown points. The velocities and accelerations of other points of interest as well as the angular velocity and acceleration of any link in the mechanism can be calculated.