• Title/Summary/Keyword: Angular errors

Search Result 159, Processing Time 0.042 seconds

The effects of knee joint position sense following local and general load protocols (국소적 부하와 전신적 부하가 슬관절 위치 감각에 미치는 영향)

  • Hwang, Yoon-Tae;Park, Rae-Joon;Choi, Jin-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.3
    • /
    • pp.429-440
    • /
    • 2005
  • The purpose of this study was to compare the effects of knee joint position sense following local and general load protocols in 25 healthy male subjects. Proprioception of the knee joint was evaluated by measuring absolute angular errors at matching angles before, after and between 2 different types of load protocols. Proprioception tests(on the dominant knee) were performed in which proprioception of the passivepassive reproduced and active-active reproduced knee position was measured. Local load was provided with maximum isokinetic knee extension-flexion on the isokinetic dynamometer(Cybex), and general load was 10 minutes running on a treadmill. Peak torque(knee extension and flexion) and heart rate(beats per minute) was evaluated as an indicator of local and general fatigue during load protocols. The results were as follows: 1. For pasive-pasive reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol(P<.05). However, no significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol (P>.05), no significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P>.05). 2. For active-active reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol (P<.05). Also, significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol(P<.05), significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P<.05). 3. A significant decrease of peak torque of knee extensors and flexors was seen after local load, although heart rate was significantly increased(P<.05). No significant change of peak torque of knee extensors and flexors was seen after general load(P>.05), although heart rate was also significantly increased(P<.05). The previous study revealed that knee proprioception is significantly altered when the muscle mechanoreceptors are dysfunctional due to muscle fatigue, although the joint mechanoreceptors have no significantly effect on knee proprioception when the presence of knee muscle fatigue. However, the results of this study are different from those of the previous study in that muscle weakness of the knee could not be seen after general load. This study shows that general load may diminish motor control by the central nervous system. Proprioceptional decline without muscle weakness of knee after general load suggests a change in the proprioceptional pathway without influence from muscle mechanoreceptors.

  • PDF

Four Degree-of-Freedom Geometric Error Measurement System with Common-Path Compensation for Laser Beam Drift

  • Qibo, Feng;Bin, Zhang;Cuifang, Kuang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • A precision four-degree-of-freedom measurement system has been developed for simultaneous measurement of four motion errors of a linear stage, which include straightness and angular errors, The system employs a retro-reflector to detect the straightness errors and a plane mirror to detect the angular errors. A common-path compensation method for laser beam drift is put forward, and the experimental results show that the influences of beam drift on four motion errors can be reduced simultaneously. In comparison with the API 5D laser measuring system, the accuracy for straightness measurement is about ${\pm}1.5{\mu}m$ within the measuring range of ${\pm}650{\mu}m$, and the accuracy for pitch and yaw measurements is about ${\pm}1.5$ arc-seconds within the range of ${\pm}600$ arc-seconds.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

Clinical problems of computer-guided implant surgery

  • Moon, Seong-Yong;Lee, Kyoung-Rok;Kim, Su-Gwan;Son, Mee-Kyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: The utilization of a cone-beam computed tomography (CT)-assisted surgical template allows for predictable results because implant placement plans can be performed in the actual surgery. In order to assess the accuracy of the CT-guided surgery, angular errors and shoulder/apex distance errors were evaluated by data fusion from before and after the placement. Methods: Computer-guided implant surgery was performed in five patients with 19 implants. In order to analyze differences of the implant fixture body between preoperative planned implant and postoperative placed implant, angular error and distance errors were evaluated. Results: The mean angular errors between the preoperative planned and postoperative placed implant was $3.84^{\circ}{\pm}1.49^{\circ}$; the mean distance errors between the planned and placed implants were $0.45{\pm}0.48mm$ horizontally and $0.63{\pm}0.51mm$ vertically at the implant neck and $0.70{\pm}0.63mm$ horizontally and $0.64{\pm}0.57mm$ vertically at the implant apex for all 19 implants. Conclusions: It is important to be able to utilize these methods in actual clinical settings by improving the various problems, including the considerations of patient mouth opening limitations, surgical guide preparation, and fixation.

Measurement of 5 DOF Motion Errors in the Ultra Precision Feed Tables for Error Compensation (오차보정을 위한 초정밀 테이블의 5 자유도 운동오차 측정)

  • 오윤진;박천홍;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.672-676
    • /
    • 2004
  • In this paper, measuring system of 5 DOF motion errors are proposed using two capacitive type sensor, a straight edge and a laser interfoerometer. Yawing error and pitching error are measured using the laser interferometer, and rolling error is measured by the reversal method using a capacitive type sensor. Linear motion errors of horizontal and vertical direction are measured using the sequential two point method. In this case, influence of angular motion errors is compensated using the previously measured angular motion errors. In the horizontal direction, measuring accuracy is within 0.05 $\mu$m and 0.27 arcsec, and in the vertical direction, it is within 0.15 $\mu$m and 0.5 arcsec. From these results, it is confirmed that the proposed measureing system is very effective to the measurement of 5 DOF motion errors in the ultra precision feed tables.

  • PDF

Efficiency of Angular Spectrum Method for Analysis of Acoustic Fields in Water (수중 초음파 음장해석에 있어서 각스펙트럼법의 유효성 검토)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.105-111
    • /
    • 1997
  • Before application of the angular spectrum method to calculate acoustic fields in stratified water, its efficiencies and errors were analyzed by using a virtual boundary in homogeneous water. As the results, it was confirmed that the angular spectrum method was able to calculate an acoustic field rapidly though some errors due to the limitation of reference field size and number of data in FFT ware included. A modified method combined the angular spectrum with Lommel's approximation, which was newly proposed in this paper, was useful to reduce the errors.

  • PDF

Study of ARS using Ring Laser Gyro (Ring Laser Gyro를 이용한 ARS에 관한 연구)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Ji, Dae-Hyeong;Jung, Dong-Wook;Kwon, O-Soon;Shin, Chang-Joo;Seo, Jung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Studies were performed on an ARS using SDINS's RLG and the geomatic sensor. To develop the ARS, experiments were performed to determine the characteristics of the RLG and geomatic sensor. Based on the results, to reduce the angular position errors of the RLG, which accumulate from the angular velocity data, an algorithm was studied that uses the Extended Kalman filter (EKF) to compensate the RLG data and geomatic sensor data. To verify the performance of the developed algorithm for reducing the cumulative angular errors, experiments that included the developed EKF were performed. Through these, it was shown that a drastic reduction in the angular errors of the RLG were achieved.

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings (각 접촉 볼베어링 스핀들의 회전정밀도 분석)

  • Hwang, Jooho;Kim, Jung-Hwan;Shim, Jongyoup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.