• Title/Summary/Keyword: Angular displacement

Search Result 211, Processing Time 0.023 seconds

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.958-963
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation $f_1\;and\;f_2$, respectively, the displacement at the center of the plate has the strongest component at frequency $f_1$. The angular displacement of the plate has strong components at $f_1-f_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shaker with low frequencies.

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

Study on BLENDED CAM DESIGN (복합곡선으로 이루어진 캠의 설계에 관한 연구)

  • Yang, Min-Yang;Shon, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.59-65
    • /
    • 1995
  • The cam is used to a main component in a variety of automatic machines and instruments. To meet the demand of a complicated operation and of reducing weight for automatic machine, Curve Blending Technology, in which each of the basic curves suitable for individual interval is connected, is used for the cam design. In the curve blending, it is necessary to select appropriate elementary curve for each interval and to confirm the dynamic continuity at connecting points between adjoining elementary curves. This paper represented the elementary curve selection method to select an appropriate curve for each interval, and executed computation for the follower displacement and angular displacement of each interval. The paper made an analysis and examine closely for elementary curves to synthesizing curve blending, and it performed dynamic conditions clearly at every points on the cam motions. Therefore the curve blending technology presented by the paper turned into easier work.

  • PDF

Performance Assessments of Three Line Simplification Algorithms with Tolerance Changes (임계값 설정에 따른 선형 단순화 알고리듬의 반응 특성 연구)

  • Lee, Jae Eun;Park, Woo Jin;Yu, Ki Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • The result of the line simplification algorithm varies with the choice of algorithms, the change in tolerance and the selection of target objects. Three of the algorithms used in this study are Sleeve-fitting, Visvalingam-Whyatt, and Bend-simplify. They were applied to the three kinds of objects which were buildings, rivers, and roads with the five degrees of the tolerance. Through this experiments the vector displacement, the areal displacement, and the angular displacement were measured and the qualitative analysis was performed with the trend line of the errors. The experimental results show that errors were differ from tolerance values, and characteristics of line simplification algorithms based on changes of tolerance were understood.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

An Experimental Study of Aerodynamic Characteristics on a Projectile with Counter-Rotating Head Installed Fins (조종면이 장착된 회전하는 발사체에서의 공력특성 분석에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.357-365
    • /
    • 2013
  • In this study, forces and moments were measured on a projectile which consisted of a missile configuration body(shell) and a head installed control fins. The shell and the head were separated each other and the shell was rotated by an electric motor. The head rotated reversely against the rotational direction of the shell. The rotational force on the head was obtained from a couple of fixed fins of which angular displacement were set to the rotational direction equally. The air velocity was 40m/s on the experiment and the Reynolds number based on the diameter of head was $1.3{\times}10^5$. The other couple of fins were used to control the position and direction of the projectile by changing the angular displacement. From this experiment, the variation of force and moment were measured on the rotating projectile, and the effective amplitude and frequency were obtained through the FFT analysis.

Structure damage estimation due to tunnel excavation based on indoor model test

  • Nam, Kyoungmin;Kim, Jungjoo;Kwak, Dongyoup;Rehman, Hafeezur;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Population concentration in urban areas has led traffic management a central issue. To mitigate traffic congestions, the government has planned to construct large-cross-section tunnels deep underground. This study focuses on estimating the damage caused to frame structures owing to tunnel excavation. When constructing a tunnel network deep underground, it is necessary to divide the main tunnel and connect the divergence tunnel to the ground surface. Ground settlement is caused by excavation of the adjacent divergence tunnel. Therefore, predicting ground settlement using diverse variables is necessary before performing damage estimation. We used the volume loss and cover-tunnel diameter ratio as the variables in this study. Applying the ground settlement values to the settlement induction device, we measured the extent of damage to frame structures due to displacement at specific points. The vertical and horizontal displacements that occur at these points were measured using preattached LVDT (Linear variable differential transformer), and the lateral strain and angular distortion were calculated using these displacements. The lateral strain and angular distortion are key parameters for structural damage estimation. A damage assessment chart comprises the "Negligible", "Very Slight Damage", "Slight Damage", "Moderate to Severe Damage", and "Severe to Very Severe Damage" categories was developed. This table was applied to steel frame and concrete frame structures for comparison.

Rotordynamic Instabilities Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner

  • Song, Bingwei;Horiguchi, Hironori;Ma, Zhenyue;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Severe flexural vibration of the rotor shaft of a Francis turbine runner was experienced in the past. It was shown that the vibration was caused by the fluid forces and moments on the backshroud of the runner associated with the leakage flow through the back chamber. The aim of the present paper is to study the self-excited rotor vibration caused by the fluid force moments on the backshroud of a Francis turbine runner. The rotor vibration includes two fundamental motions, one is a whirling motion which only has a linear displacement and the other is a precession motion which only has an angular displacement. Accordingly, two types of fluid force moment are exerted on the rotor, the moment due to whirl and the moment due to precession. The main focus of the present paper is to clarify the contribution of each moment to the self-excited vibration of an overhung rotor. The runner was modeled by a disk and the whirl and the precession moments on the backshroud of the runner caused by the leakage flow were evaluated from the results of model tests conducted before. A lumped parameter model of a cantilevered rotor was used for the vibration analysis. By examining the frequency, the damping rate, the amplitude ratio of lateral and angular displacements for the cases with longer and shorter overhung rotor, it was found that the precession moment is more important for smaller overhung rotors and the whirl moment is more important for larger overhung rotors, although both types of moment due to the leakage flow can cause self-excited vibration of an overhung rotor.

Effects of Gender, Skill Level, and Club on Kinematics of Golf Swing (성, 기술수준 및 클럽이 골프 스윙의 운동학적 요인에 미치는 영향)

  • Kwon, Sun-Ok;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.79-94
    • /
    • 2005
  • Because the golf swing is very complex movement, it is varied in different gender, skill level, and club. This study measured kinematic variables in golf swing regarding gender, skill level, and club types using FasTrak electromagnetic tracking system. Golf swing kinematics including time variables, linear and angular displacement variables, angular velocity variables were analyzed and compared through three-way ANOVA The results were as follows: 1. In time variables, Female and driver showed longer backswing time than male and iron. Downswing time was longer in female and nonexperts than male and experts. Backswing time over downswing time was longer in experts than nonexperts. Uncocking time was longer in male and experts than female and nonexperts. The differences were statistically significant (p<.05). 2. In displacement variables, Female and nonexperts showed greater backswing head lift than male and experts. Impact head lift was greater in female, nonexperts, and iron than male, experts, and driver. The differences were statistically significant (p<.05). Experts and driver showed greater top hip rotation angle than nonexperts and iron. Top shoulder rotation angle was greater in male, experts and driver than female, nonexperts, and iron. X-factor was greater in male, experts, and driver than female, nonexperts, and iron. Male and experts showed greater backswing hip sway than female and nonexperts. Impact hip sway was greater in male and iron than female and driver. The differences were statistically significant (p<.05). 3. In velocity variables, Experts displayed higher impact hip rotation velocity than nonexperts. Impact shoulder rotation velocity was greater in male and iron than female and driver (p<.05).