• Title/Summary/Keyword: Angular deformation

Search Result 212, Processing Time 0.034 seconds

Texture Development during ECAP and High Strain Rate Compression Behavior in Zn-Al Alloy (ECAP 공정에 따른 Zn-Al 합금의 집합조직 발달 및 소성 유동에 대한 실험적 연구)

  • Jung, J.Y.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.374-377
    • /
    • 2008
  • High temperature deformation behavior and texture evolution during ECAP(equal channel angular pressing) of Zn-0.3Al alloy were investigated in this study. ECAP was conducted at temperatures from $40^{\circ}C$ to $160^{\circ}C$ on the plate type specimen of 5mm thickness and 20mm width. The specimens obtained by ECAP showed typical texture with basal poles tilted away from the ND toward ED. A series of compression tests was carried out at temperatures from RT to $200^{\circ}C$ under the strain rate from 0.03 to 10/s. With the strain rate increased, serration behavior was observed to be prominent.

  • PDF

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Effect of friction different channel conditions and temperatures during ECAP (IF-Steel의 ECAP 공정 중 채널 상태와 온도에 따른 마찰효과)

  • ;;;;Rahph Hellmig;Yuri Estrin
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • Equal channel angular pressing (ECAP) provides an efficient procedure for introducing an ultrafine grain size into a material. In this study, ECAP were conducted on IF-steel to investigate the effect of friction and processing temperatures on the deformation characteristics of the samples. Due to the blocking effect of the previously pressed samples residing in the exit channel, the shear pattern (especially on the bottom region) changes.

  • PDF

Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion (강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF

Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion (크랙과 집중질량을 갖는 회전 외팔보의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.354-359
    • /
    • 2008
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

  • PDF

Effect of Preload on Running Accuracy of High Speed Spindle (고속 주축에 있어서의 예압력 변화가 회전정도에 미치는 영향)

  • 송창규;신영재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • The rotational performance off machine tool spindle has a direct influence upon the surface finish of the finished workpiece. This running accuracy of the spindle is improved by increasing preload on the bearings, while it results in higher temperature rise and larger thermal deformation. Therefore, finding the optimal preload condition for high speed spindle is very important factors in spindle motion. in spindle motion. In this study, the effect of the preload on the roundness accuracy has been examined at the different cutting conditions. Experiments were carried out to investigate the effects of the bearing preload on the running accuracy of high speed spindle which was supported by two angular contact bearings.

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Position Control of Laser Scanning Mirror Using Piezoelectric Actuator (압전작동기를 이용한 레이져 스케닝 미러의 위치제어)

  • 지학래;김재환;최승복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.442-445
    • /
    • 1995
  • This paper presents the position tracking control of a laser scanning mirror system in which piezoelectic actuator is incorporated. Using the shear mode of the piezoelectric actuator,angular oscillation of a laser scanning mirror is derived. Torsion bar is rhen designed and attached to the piezoelctric actuator in order to magnify the amplitude generated by the actuator. Finite element modeling and analysis are essntial for designing the piezoelectic actuator. The torsional resonance mode of the piezoelectric actuator is found from the model analysis of the actuator and the mechanical shear is matched with the driving frequency. Transfer function between the electrical excitation and the mechanical shear deformation at resonance frequency is found form the response of the actuator calculated by the finite element analysis and the governing equation of the system is derived from d'Alembert's principle. Tracking control performance for desired trajectory which is, in fact, sinusoidal curve is presented in order to demonstrate the validity of the proposed system.

  • PDF

Flapwise Bending Vibration Analysis of Rotating Composite Cantilever Beams (복합재 회전 외팔보의 면외방향 굽힘진동 해석)

  • Lee, Seung-Hyun;Shin, Sang-Ha;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.887-892
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating composite beam is presented in this paper. Linear differential equations of motion are derived by using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion Symmetrical laminated layers are considered for the composite beam. The effects of the dimensionless angular velocity, the hub radius and the fiber orientation angle parameter on the variations of modal characteristics are investigated.

  • PDF

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.