• Title/Summary/Keyword: Angular Information

Search Result 444, Processing Time 0.025 seconds

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF

A Study on the 3D Stereoscopic Disparity in Four Animation Movies (3D 입체 애니메이션의 장면별 입체시차 연구)

  • Suh, Donghee
    • Cartoon and Animation Studies
    • /
    • s.34
    • /
    • pp.105-128
    • /
    • 2014
  • This study was aimed to analyze the disparities of 3D stereoscopic images in four well-known American animation movies. After Avatar (2009), lots of stereoscopic movies were developed in Korean 3D production. Almost all 3D productions in Korea, however, focus on the display images or TV series animation yet. In order to make many well-made Korean stereoscopic 3D animations in future, analyzing and comparing the disparities of 3D stereoscopic images is necessary and even mandated. First, I chose 40 cuts from each four American stereoscopic 3D feature films, including Despicable me 2, Epic, Monster University, and Turbo. According to the classifications of shot angles by Vineyard (2008), secondly I analyze the 23 different angular disparities of 3D stereoscopic images and displayed in tables. Demonstrated shot angle disparities in each scene would provide numerical information to animators how to design and make the 3D stereoscopic images. Making successful stereoscopic 3D feature film will be a huge turning point in the Korean animation field in future. This study would be a first trial to seek a new method to set ahead an outlook of numerical values of 3D stereoscopic images for better visual effects.

Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices

  • Nakajima, Isao;Tanaka, Sachie;Mitsuhashi, Kokuryo;Hata, Jun-ichi;Nakajima, Tomo
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.293-302
    • /
    • 2019
  • In the past, there was a theory that influenza wasn't transmitted directly from birds but was infected to humans via swains. Recently, molecular level research has progressed, and it was confirmed that the avian influenza virus can directly infected to human lung and intestinal epithelial cells. Three pandemicsin the past 100 years were also infected to humans directly from birds. In view of such scientific background, we are developing a method for screening sick birds by monitoring the physiological characteristics of birds in a contactless manner with sensors. Here, the movement of respiratory muscles and abdominal muscles under autonomic innervation was monitored using a magnet and Hall sensor sewn on the thoracic wall, and other multimedia devices. This paper presents and discusses the results of experiments involving continuous periodic noise discovered during flight experiments with a data logger mounted on a Japanese pheasant from 2012 to 2015. A brief summary is given as the below: 1. Magnet and Hall sensor sewn to the left and right chest walls, bipolar electrocardiograms between the thoracic walls, posterior thoracic air sac pressure, angular velocity sensors sewn on the back and hips, and optical reflection of LEDs (blue and green) from the skin of the hips allow observation of periodic vibrations(fasciculations) in the waves. No such analysis has been reported before. 2. These fasciculations are presumed to be derived from muscle to maintain and control air sac pressure. 3. Since each muscle fiber is spatially Gaussian distributed from the sympathetic nerve, the envelope is assumed to plot a Gaussian curve. 4. Since avian trunk muscles contract periodically at all time, we assume that the sympathetic nerve dominates in their control. 5. The technique of sewing a magnet to the thoracic wall and measuring the strength of the magnetic field with a Hall sensor can be applied to screen for early stage of avian influenza, with a sensor attached to the chicken enclosure.

Implementation for Texture Imaging Algorithm based on GLCM/GLDV and Use Case Experiments with High Resolution Imagery

  • Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.626-629
    • /
    • 2004
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program for GLCM algorithm is newly implemented in the MS Visual IDE environment. While, additional texture imaging modules based on GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV texture variables, it composed of six types of second order texture function in the several quantization levels of 2(binary image), 8, and 16: Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality, four directions are provided as $E-W(0^{\circ}),\;N-E(45^{\circ}),\;S-W(135^{\circ}),\;and\;N-S(90^{\circ}),$ and W-E direction is also considered in the negative direction of E- W direction. While, two direction modes are provided in this program: Omni-mode and Circular mode. Omni-mode is to compute all direction to avoid directionality problem, and circular direction is to compute texture variables by circular direction surrounding target pixel. At the second phase of this study, some examples with artificial image and actual satellite imagery are carried out to demonstrate effectiveness of texture imaging or to help texture image interpretation. As the reference, most previous studies related to texture image analysis have been used for the classification purpose, but this study aims at the creation and general uses of texture image for urban remote sensing.

  • PDF

Development of High Performance Massively Parallel Processing Simulator for Semiconductor Etching Process (건식 식각 공정을 위한 초고속 병렬 연산 시뮬레이터 개발)

  • Lee, Jae-Hee;Kwon, Oh-Seob;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.37-44
    • /
    • 1999
  • This paper report the implementation results of Monte Carlo numerical calculation for ion distributions in plasma dry etching chamber and of the surface evolution simulator using cell removal method for topographical evolution of the surface exposed to etching ion. The energy and angular distributions of ion across the plasma sheath were calculated by MC(Monte Carlo) algorithm. High performance MPP(Massively Parallel Processing) algorithm developed in this paper enables efficient parallel and distributed simulation with an efficiency of more than 95% and speedup of 16 with 16 processors. Parallelization of surface evolution simulator based on cell removal method reduces simulation time dramatically to 15 minutes and increases capability of simulation required enormous memory size of 600Mb.

  • PDF

Detection of Unsafe Zigzag Driving Maneuvers using a Gyro Sensor (자이로센서를 이용한 사행운전 검지 및 경고정보 제공 알고리즘 개발)

  • Rim, Hee-Sub;Jeong, Eun-Bi;Oh, Cheol;Kang, Kyeong-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.42-54
    • /
    • 2011
  • This study presented an algorithm to detect zigzag driving maneuver that is highly associated with vehicle crash occurrence. In general, the zigzag driving results from the driver's inattention including drowsy driving and driving while intoxicated. Therefore, the technology to detect such unsafe driving maneuver will provide us with a valuable opportunity to prevent crash in the road. The proposed detection algorithm used angular velocity data obtained from a gyro sensor. Performance evaluations of the algorithm presented promising results for the actual implementation in practice. The outcome of this study can be used as novel information contents under the ubiquitous transportation systems environment.

Pressure Effect on the Aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2]^+$ Complex Ions (trans-[Cr(tn)$_2Cl_2]^+$ 및 trans-[Cr(en)(tn)Cl$_2]^+$ 착이온의 수화반응에 미치는 압력효과)

  • Jong-Jae Chung;Jong-Ha Choi;Deog-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.375-381
    • /
    • 1987
  • Rates for the aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2$]^+$ ions in aqueous acidic solution have been measured by spectrophotometric method at various temperatures and pressures. Activation volumes are negative and lie in the limited range -1.7 ∼ -2.9cm$^3$mol$^{-1}$ or the complex ions. Activation entropies and activation compressibility coefficients are small negative values. From the results of thermodynamic parameters, it can be inferred that the aquation of the complex ions proceed through an associative interchange(Ia) mechanism. Furthermore, the information on possible transition state structure and reaction paths can be obtained by considering total stabilization energy of the hypothetical intermediates within the framework of angular overlap model. It is found that the theoretically predicted mechanism is consistent with the experimentally observed results.

  • PDF

Hand Motion Design for Performance Enhancement of Vision Based Hand Signal Recognizer (영상기반의 안정적 수신호 인식기를 위한 손동작 패턴 설계 방법)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.30-37
    • /
    • 2011
  • This paper proposes a language set of hand motions for enhancing the performance of vision-based hand signal recognizer. Based on the statistical analysis of the angular tendency of hand movements in sign language and the hand motions in practical use, we construct four motion primitives as building blocks for basic hand motions. By combining these motion primitives, we design a discernable 'fundamental hand motion set' toward increasing the hand signal recognition. To demonstrate the validity of proposed designing method, we develop a 'fundamental hand motion set' recognizer based on hidden Markov model (HMM). The recognition system showed 99.01% recognition rate on the proposed language set. This result validates that the proposed language set enhances discernaility among the hand motions such that the performance of hand signal recognizer is improved.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Analysis of Research Trends for BrIC Injury (BrIC 상해에 대한 경향 분석 및 고찰)

  • Lee, Kihwang;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.12-17
    • /
    • 2016
  • NHTSA (National Highway Traffic Safety Administration) has offered consumers the vehicle safety information on their car since 1978. NHTSA believes that they contribute auto makers to develop safer vehicle for customers, which will result in even lower numbers of deaths and injuries resulting from motor vehicle crashes. NHTSA has been studied why people are still dying in frontal test despite of the use of many restraints system and they understand that current test does not reflect real world crash data such as oblique and corner impact test. As a result, NHTSA announced that a new test method will be introduced to use of enhanced biofidelic dummy and new crash avoidance technology evaluation from 2019. New and refined injury criteria will be applied to Head / Neck / Chest / Lower Leg. BrIC(Brain Injury Criterion)value in NHTSA test results using THOR dummy from 2014 to 2015 was average 0.91 and 1.24 in driver and passenger dummies. IIHS 64kph SOF test is the most likely to new frontal oblique test in an aspect of offset impact which is being studied by NHTSA. In this paper, we focused on head injury, especially brain injury - BrIC and conducted IIHS 64kph SOF (Small Offset Front) test with Hybrid III dummy to evaluate the injury for BrIC. Based on the test results, these data can be predicted BrIC level and US NCAP rating with current vehicle.