• Title/Summary/Keyword: Angular Contact Ball Bearing Numerical Analysis

Search Result 5, Processing Time 0.02 seconds

Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads

  • Hong, Seong-Wook;Kang, Joong-Ok;Yung C. Shin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.61-71
    • /
    • 2002
  • This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris's bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring. This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings. This examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

Fatigue Life Analysis for Angular Contact Ball Bearing with Angular Misalignment (각 어긋남을 고려한 각접촉 볼베어링의 피로수명 해석)

  • Bae, Gyu-Hyun;Tong, Van-Canh;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • Angular misalignment has a significant effect on the characteristics of angular contact ball bearings (ACBBs). This paper presents an analysis of fatigue life for ACBBs subjected to angular misalignment. A simulation model is developed with de Mul's bearing model and the ISO basic reference rating life model. Simulation is performed to calculate the life of the ACBBs subjected to angular misalignment. The numerical results show that angular misalignment influences the load distribution significantly, thus reducing the bearing rating life. The fatigue life of ACBBs is decreased by angular misalignment regardless of axial preload, external radial load and rotational speed. The results show that angular misalignment should be maintained at less than 1mrad for ACBBs.

A Design of an Automotive Wheel Bearing Unit for Long Life (자동차 휠 베어링 유닛의 장수명 설계)

  • Yun, Gi-Chan;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.

An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts : Part II (타원접촉의 탄성유체윤활해석 : 제2보)

  • 박태조;현준수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.182-188
    • /
    • 1999
  • A theoretical study of elastohydrodynamic lubrication of elliptical contacts with both rolling and spin has been carried out. A finite difference method and the Newton-Raphson method are applied to solve the problem. The velocity vectors resulting from combined spin and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. At high spin-roll ratios the minimum film thickness is considerably reduced, whereas the central film thickness decreases less dramatically, The present numerical scheme can be used in the analysis of general elliptical contact problems.

  • PDF