• Title/Summary/Keyword: Angle punch

Search Result 78, Processing Time 0.023 seconds

Material Flow and Surface Expansion in Radial-Backward Extrusion (레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장)

  • 고병두;최호준;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

A Study on the bending process of glass fiber reinforced thermoplastic composite (유리섬유 강화 열가소성 복합재료의 굽힘성에 대한 연구)

  • 남궁천;김동석;이중희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.513-517
    • /
    • 1997
  • Glass fiber reinforced thermoplastic composite materials have considerable promise for increased use in low cost high volum applications because of the potential for processing by solid phase forming. However, the forming characteristics of these materials have not been well known. The primary focus of this research is the investigation of the bendability of these composites and spring-back phenomena in pure bending. The materials tested contained 10, 35, and 40 percent by weight of randomly oriented glass fiber in a polypropylene matrix. The bending tests were performed at temperatures ranging form 75 ".deg. c" to 150 ".deg. c" and at punch speeds of 2.54 mm/sec and 0.0254 mm/sec. The measured bendability and spring back angle in pure bending werw compared with the predictions based on the simple analyical models. Goog agreement between experimental and analytical results was observed.esults was observed.

  • PDF

Quantitative Analysis of Elastic Recovery Behavior after Bending of Ultra High Strength Steel Sheet: Spring-back or Spring-go (유한요소법을 이용한 초고강도 판재 굽힘에 따른 후변형의 정량적 분석: Spring-back or Spring-go)

  • Kwak, E.J.;Lee, K.;Suh, C.H.;Lim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.456-460
    • /
    • 2011
  • A major source of difficulty in die design for high strength steel is the high level of elastic recovery during unloading. The degree of elastic recovery is affected by factors such as material strength, bending angle, punch's corner radius and sheet thickness. Finite Element Method was used in the present work to quantitatively analyze the elastic recovery for various combinations of these parameters. In some cases elastic recovery happened in reverse direction. This phenomenon, which we call spring-go, was explained via changes in stress distribution in the panel occurring in the forming process.

A Study on the Drawing characteristics of Sheet through Step Drawbead (계단형 드로오비드에 의한 판재의 인출특성에 관한 연구)

  • 박원배;김창만;김낙수;서대교;전기찬
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.130-137
    • /
    • 1996
  • The sheet formability can be improved by the optimum drawbeads installation because draw-beads can control the flow of the metal into the die cavity when the punch enters into the die opening, In this study the drawing characteristics for step drawbead are analyzed by 2-D rigid -plastic FEM and also are measured experimentally. In addition for the validity of FEM theoretical results are compared with the experimental results. Especially the draw bead restrain-ing forces and the strain distributions of drawn specimens are obtained in both FEM and experiment. Also the effects of the drawbead dimensions drawing angles and blank holding forces on the drawing characteristics are investigated.

  • PDF

A Study on the Perforating Process of the Muffer Tube using FEM

  • Han Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.275-280
    • /
    • 2005
  • Recently there has been a growing interest in the design and manufacturing of the muffler tube due to the strict environment regulations, A muffler is an important part used to reduce noise and to purify exhaust gas in cars and heavy equipment. The shape of the muffler tube and the number of the tube hole has been made variously according to the weight and function of the car. The perforating technique of the muffler tube has a great influence on the manufacturing cost. In this study, metal forming analysis has been carried out to investigate the perforating process for the muffler tube and predict an optimal forming conditions of the muffler tube, Also its simulation results by the finite element method were reflected to the die design and the manufacturing system for the muffler tube. The perforating process is performed in the longitudinal direction of the tube. According to the simulation results, when the shear angle of punch was similar to the tube curvature, the optimal shape was obtained. Also when the clearance of die was 0.2mm, the burr was minimized and optimal shear section was obtained.

A Study for Progressive Working of Electronic Products by the using 3-D Shape Recognition Method (3차원 형상인식 기법을 이용한 전기제품의 프로그레시브 가공에 관한 연구)

  • Kim, Y. M.;Kim, J. H.;Song, S. W.;Kim, C.;Choi, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.591-594
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout module. Based on knowledge-based rules, the system is designed by considering several factors such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing generated by the piercing processes with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer for progressive working of electronic products to be more efficient in this field.

  • PDF

Analysis of a Complete Contact Problem in Bonded Condition: Comparison of Experimental-Numerical Analyses and Theoretical Solutions (응착조건의 완전접촉문제 해석: 실험 및 수치해석과 이론해의 비교)

  • Kim, Hyung-Kyu;Jang, Jae-Won;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Asymptotic method has been often used to theoretically analyze the complete contact problem. The error of the asymptotic results increases as the distance from the contact edge increases. The singularity cannot be properly obtained from a finite element (FE) analysis owing to the finiteness of the element size. In the present work, the complete contact problem in bonded condition is analyzed using a combined experimental-numerical approach to assist and/or compare with the asymptotic results. Al and Cu alloys are used for the material combination of the punch and substrate. 120 and 135 degrees are used for the punch angle. The FE models are validated by comparison of displacement distributions obtained by the FE analysis and $moir{\acute{e}}$ experiment. Generalized stress intensity factors are evaluated using the validated FE models. Stress field in the vicinity of the sharp contact edges obtained from the FE and asymptotic analyses are compared. The discrepancies are also discussed.

Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface (3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션)

  • Park, Sung-Ju;Lee, Kangsu;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.

Development of Side Forming Technology for the Tooth Part Using B.T.Pin in Cold Forming Process (B.T.Pin을 이용한 치형부품의 측면 냉간성형공법 개발)

  • Lee, J.S.;Park, S.J.;Kim, B.M.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, the method of process design for side forming of a tooth part used for a component of automobile transmission was suggested using FE-simulations. To develop the side forming for the tooth part, in this paper, the shape factors of B.T.Pin was considered as design parameters. The shape factors of B.T.Pin were selected to be the round of pin, reinforced angle and reinforced length. Based on FE simulation results, appropriate shape factor without causing any defects was selected. In addition, to increase the strength of pin, the combination of shape factor having minimum stress after side forming was selected using FE-simulation. In addition, with design of a die set, cold side forming of the tooth part was experimented to estimate effectiveness of the designed B.T.Pin. From experiments, it was found that the tooth part with complete formation of the tooth was obtained without making any forming defects and punch fracture.

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.