• Title/Summary/Keyword: Angle of attack

Search Result 739, Processing Time 0.03 seconds

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

2 Dimensional Flow Analysis according to the Submerged Body of Catamaran Leisure Ship (쌍동선형 레저선박의 몰수부 간격에 따른 2차원 유동해석)

  • Lee, Chang-Woo;Oh, Woo-Jun;Lee, Dong-Sup;Shan, Chang-Bae;Lee, Gyung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • There are marry ships and marine structures and also has marry differences on according to the shape and the interval of hulls to the purpose. the multi-submerged body needs appropriate distance between the hulls because of the optimum hull form. thus, through this paper, the flow characteristics behind the multi-submerged body according os the distance ration between the hulls and various angles of attack was conducted.

  • PDF

Stability Analysis of Boundary Layers on Airfoils by using PSE (PSE를 이용한 익형 위 경계층 안정성 해석)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1055-1065
    • /
    • 2009
  • In this study, stability analysis of boundary layers on airfoils is performed by using parabolized stability equations(PSE). Boundary layer edge conditions are obtained by compressible inviscid flow calculations. Mean velocity and temperature profiles of the laminar boundary layer are obtained by solving compressible boundary layer equations in generalized curvilinear coordinates with fourth order accuracy in the wall normal direction. Laminar mean flow profiles are used as input data for PSE to investigate growth rates of disturbances and stability characteristics. For the cases of boundary layer on NACA0012 and HSNLF(1)-0213 airfoils at Mach number 0.5, growth rates with respect to disturbance frequencies and profiles of disturbance amplitude are investigated. The effect of angle of attack on stability characteristics are examined at both upper and lower surfaces. The neutral stability curves, effect of Mach number and effect of airfoil section shapes are also analyzed.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Papers : An Experimental Study of the Aerodynamic Characteristics Using the Wing - tip Jet Blowing at the Aircraft (논문 : 날개끝 불어내기 장치가 있는 항공기의 공력특성에 관한 실험연구)

  • Hong, Hyeon-Ui;Jeong, Un-Gap;Kim, Beom-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • The pressure distributions on a semi-span wing 1/12 scale mode and sic component aerodynamic forces and moments on a complete 1/16 scale advanced trainer model were measured. To reduce wing-tip vortex strength, 3 wing-tip jet slot shaped(forward $35{^{\circ}C}$ direction, straigt direction, backward $35{^{\circ}C}$ direction) and 3 blowing coefficents (0.004, 0.009, 0.017) were considered. From experiment results, the case of straight direction and blowing coefficent of 0.017 was the best effective in the reduction of drag and in increase of lift-drag ratio and A rate of drag decrease and a rate of lift-drag ratio increase were of most effective on angle of attack 8 degree.

Measurement of an Unsteady Boundary Layer of an Oscillating Airfoil at a Low Reynolds Number (저 레이놀즈수에서 진동하는 에어포일의 비정상 경계층 측정)

  • Kim, Dong-Ha;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.9-17
    • /
    • 2006
  • An experimental study was carried out to examine the behavior of the unsteady boundary layer. An NACA 0012 airfoil with aspect ratio of 2.7 was set vertically in a test section, which is sinusoidally pitched about the quarter chord. The oscillating amplitude is from -6$^{\circ}$ to +6$^{\circ}$ and the mean angle of attack is 0$^{\circ}$. Surface mounted probes (Glue-on probes) were employed to measure the surface flow of the boundary layer. Measurements were made at free-stream velocities of 1.98, 2.83, and 4.03m/s, and the corresponding Reynolds numbers based on the chord length were 2.3$\times$104, 3.3$\times$104 and 4.8$\times$104, respectively. The reduced frequency is fixed as 0.1 in all cases. The results show that the surface position of minimum shear stress and of boundary layer break-down can be discerned in the Reynolds number between 2.3$\times$104 and 3.3$\times$104.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.

The 3D Numerical Analysis on the Turbulent at 40° Crosswind, for the Predictions of Flight Stability at Take-off and Landing (이·착륙 비행 안정성 예측을 위한 측풍 40° 방향에 대한 3차원 수치해석)

  • Sheen, Dong-Jin;Kim, Do-Hyun;Park, Soo-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.179-189
    • /
    • 2012
  • The aim of this paper is to research the change in the turbulent flow and the AOA(Angle Of Attack) occurred by $40^{\circ}$ crosswind to the direction of runway through the three-dimensional numerical analysis and to predict the take-off and landing flight stability. As a result, the maximum amplitude of AOA variation on runway reached $2^{\circ}$ within 3 second because of the wake formed by the constructions in the vicinity of the airport, and the overall effects appeared as an irregular aperiodic forms. Additionally, it was observed that the layout and shape of the buildings effected on the strength of turbulence directly, and the rapid flow generated between the buildings changed into stronger wake and eventually expected that the flow raises serious take-off and landing flight instability.