• Title/Summary/Keyword: Angiotensin converting enzyme (ACE) inhibitory activity

Search Result 279, Processing Time 0.041 seconds

Angiotensin-I Converting Enzyme Inhibitory Activity of Algae (해조류의 Angiotensin-I 전환효소 저해작용)

  • LEE Heon-Ok;KIM Dong-Soo;DO Jeong-Ryong;KO Young-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.427-431
    • /
    • 1999
  • This study was conducted to investigate the inhibitory activity of water extracts and its enzymatic hydrolysates from algae against angiotensin-I converting enzyme (ACE). The 7 kinds of algae were extracted with water at $50^{\circ}C,\;70^{\circ}C$ and $98^{\circ}C$. ACE inhibitory activities of water extracts were the highest at $70^{\circ}C$, and those of ceylon moss, layer, green layer, sea mustard, seaweed fusiforme sea tangle and sea staghorn were $10.9\%,\;9.3\%,\;8.9\%,\;8.2\%,\;7.5\%,\;7.1\%$ and $7.0\%$, respectively. Layer, green laver sea mustard and ceylon moss of high ACE inhibitory activities among the 7 kinds of water extracts were hydrolyzed by maxazyme and papain during 24hrs. ACE inhibitory activity of enzymatic hydrolysates was higher than that of water extracts, and was the highest in enzymatic hydrolysates of laver among the tested samples. In laver hydrolysates by proteases, the highest ACE inhibitory activity and peptide-nitrogen contents were observed at 8 hours hydrolysis and the hydrolysates by maxazyme showed relatively higher activity than those by papain(31.3 and $27.9\%$, respectively). But peptide-nitrogen contents were greater in papain hydrolysates than in maxazyme.

  • PDF

Inhibitory Effect against Angiotensin Converting Enzyme and Antioxidant Activity of Panax ginseng C. A. Meyer Extracts (인삼 추출물의 Angiotensin Converting Enzyme 저해 효과와 항산화 활성)

  • Lee, Seung-Eun;Seong, Nak-Sul;Bang, Jin-Ki;Kang, Seung-Won;Lee, Sung-Woo;Chung, Tae-Yung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.3
    • /
    • pp.236-245
    • /
    • 2003
  • The study was performed for elucidating angiotensin converting enzyme (ACE) inhibitory activity and comparing antioxidative activity of Panax ginseng extracts prepared at different conditions. Total phenolic content, inhibitory activity on ACE and antioxidative effects were tested on 10 ethanolic extracts and correlation coefficient between total phenolic content and physiological activity was calculated. Yield and total phenolic content of 50% ethanolic extract prepared at $85^{\circ}C$ exhibited the highest value as 42.52% and 0.82%, respectively. Among the fractions obtained from 50% ethanolic extract prepared at room temperature, water fraction showed the highest value in yield as 72.08% and ethyl acetate fraction did in total phenolic content as 6.59%. In the test on ACE inhibitory activity, 50% ethanolic extract obtained at room temperature indicated the strongest effect of 93.8% which was higher than 85.2% of commercialized ACE inhibitor and solvent fractions showed potent inhibitory activity in order of hexane fraction, diethyl ether fraction, ethyl acetate fraction, butanol fraction and water fraction at concentration of $4000{\mu}g/ml$. 50% Ethanolic extract prepared at $85^{\circ}C$ had the most potent inhibition effect on human LDL oxidation as 78.2% at $200{\mu}g/ml$ and the other extracts also did above 60%. Diethyl ether fraction and ethyl acetate fraction showed strong inhibition activity $(34.38%{\sim}78.13%)$ on LDL oxidation at concentration of $10{\sim}200\;{\mu}g/ml$. From the statistical analysis via SAS program, correlation coefficient between total phenolic content and ACE inhibitory effect was 0.6353 at P<0.05. Conclusively, this report showed that the most efficient extraction condition for elevating inhibitory activity on ACE and LDL oxidation, phenolic content and yield from Panax ginseng was 50% ethanol extraction at room temperature or high temperature condition. And Panax ginseng would be used for preventing hypertension or atheroscrelosis for man via inhibitory action on ACE and LDL oxidation.

Storage Stability of the Synthetic Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Separated from Beef Sarcoplasmic Protein Extracts at Different pH, Temperature, and Gastric Digestion

  • Jang, Ae-Ra;Jo, Cheo-Run;Lee, Moo-Ha
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.572-575
    • /
    • 2007
  • The angiontensin converting enzyme (ACE) inhibitory peptides were separated from beef sarcoplasmic protein extract and their amino acid sequences were identified as GFHI, DFHINQ, FHG, and GLSDGEWQ. The 4 peptides were synthesized in a laboratory and the ACE inhibitory activities of pep tides was measured after 2 months of storage at $4^{\circ}C$ under different pH conditions (6.0, 6.5, 7.0, 7.5, and 8.0) and the exposure of different temperatures (70, 80, 90, and $100^{\circ}C$) for 20 min to evaluate industrial use. No significant difference was detected by pH and temperature abuse for 20 min during storage. When the synthetic peptides were digested by pepsin, trypsin, and chymotrypsin, the ACE inhibitory activity was not changed. These results indicated that the 4 synthetic peptides with ACE inhibitory activity were pH-stable, heat-stable, and resistant to proteinases in gastro-intestinal tracts. Therefore, those 4 peptides can be used as a source for functional food product with various applications.

Angiotensin Converting Enzyme Inhibitory Activity in Enzymatic Hydrolysates of Anchovy Muscle Protein (멸치육 효소 가수분해물의 Angiotensin 전환효소 저해작용)

  • LEE Tae-Gee;PARK Young-Beom;PARK Douck-Choun;YEUM Dong-Min;KIM In-Soo;GU Yeun-Suk;PARK Young-Ho;KIM Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.875-881
    • /
    • 1998
  • To develop functional food material with angiotensin converting enzyme (ACE) inhibitory peptides, muscle protein of anchovy, Engraulis japonica was hydrolyzed during 48 hrs by digestive pretenses such as pepsin, trypsin, $\alpha$-chymotrypsin, and commercial proteases such as papain, bromelain, complex enzyme, Elavourzyme, Novozym, Neutrase, Protamex and Alcalase. The only $50\%$ ethanol soluble hydrolysates were tested for inhibitory activity against ACE and yield of $50\%$ ethanol soluble peptide-nitrogen ($ESPN_{50}$). ACE inhibition effects and yield of $ESPN_{50}$ occurred as hydrolysis time increased to 8 hrs, Among those pretenses tested, hydrolysates by Alcalase and $\alpha$-chymohypsin had greater ACE inhibitory activity (80 and $74\%$, reipectively) with eletated levels of $ESPN_{50}$ (48 and 58 mg/ml, respectively), while Protamex hydrolysates had greater ACE inhibitory activities ($73\%$) with reduced levels of $ESPN_{50}$ (7.2mg/ml) than others. Amino acid compositions of $50\%$ ethanol solubles obtained from those hydrolysates were rich in glutamic acid, aspartic acid, cysteine and leucine.

  • PDF

Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates (Ovotransferrin 가수분해물의 Angiotensin-converting Enzyme 활성억제 효과 및 생산 최적화)

  • Lee, Na-Kyoung;Ahn, Dong-Uk;Park, Keun-Kyu;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.286-290
    • /
    • 2010
  • Angiotensin-converting enzyme (ACE) inhibitory activity and production optimization of ovotransferrin hydrolysates were studied. Ovotransferrin was hydrolyzed by several enzymes (protamex, alcalase, trypsin, pepsin, neutrase, and flavorzyme) and acid (0.03 N HCl). Ovotransferrin hydrolysate reduced ACE activity by 60.2%, 55.8%, and 42.6% when treated with trypsin, acid, and pepsin, respectively. Trypsin was selected for production of peptide having maximum AC inhibitory effect, which was greatest with 7 h hydrolysis. Central composite design determined that optimum composition of ACE inhibitory substances using substrate concentration of 20-35%, temperature of $35-55^{\circ}C$, and pH of 6.0-8.0. The optimum composition was 1% trypsin, substrate concentration of 26.32%, $51.29^{\circ}C$, and pH 6.32. Under this conditions, a maximum ACE inhibitory effect of 69.1% was evident, similar to the predicted value.

γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae

  • Jang, Eun Kyeong;Kim, Nam Yeun;Ahn, Hyung Jin;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1315-1320
    • /
    • 2015
  • To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30℃ and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

The Relationship between Physiological Activity and Cell Number in Dolsan Leaf Mustard Kimchi (Brassica juncea)

  • Park, You-Young;Yoo, Eun-Jeong;Lim, Hyun-Soo;Kang, Dong-Soo;Naoyuki Nishizawa;Park, Myeong-Rak
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 2001
  • Changes in antioxidative activity and Angiotensin converting enzyme(ACE) inhibitory activity in juice prepared from Dolsan leaf mustard kimchi (DLMK) ar various fermentation temperatures were investigated. Antioxidative activity of juice from optimally ripened DLMK at 20 and 3$0^{\circ}C$ showed 80 and 83%, respectively. Juice from 10-day fermented DLMK at 3$0^{\circ}C$ showed 62% inhibitory activity against the ACE. In the juice fermented DLMK at 2$0^{\circ}C$~3$0^{\circ}C$, physiological activity was higher than that of the 4~1$0^{\circ}C$. In particular, optimally ripened DLMK at 3$0^{\circ}C$ showed the highest physiological activity. The physiological activity in DLMK juice at the fermentation period increased significantly with an increase in the growth of microbes. Consequently, a maximum physiological activity was shown at the maximum cell number. These results suggest that the microorganisms in DLMK juice would play an important role in the physiological activity.

  • PDF

Effect of Angiotensin-I Converting Enzyme Inhibitory from Hydrolysate of Soybean Protein Isolate (분리대두단백질 가수분해물의 Angiotensin-I Converting Enzyme 저해효과)

  • Back, Su-Yeon;Do, Jeong-Ryong;Do, Gun-Pyo;Kim, Hyun-Ku
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The angiotensin converting enzyme (ACE) inhibition effect of soybean protein isolate hydrolysate was studied using protease. Soybean protein isolate was hydrolysed by seven enzymes (Alcalase 2.4 L, Flavourzyme 500 MG, GC 106, Multifect Neutral, Neutrase 0.8 L, Papain 30,000 and Protamex), enzyme concentrations (0, 0.5, 1.0 and 1.5%), at various hydrolysis times (0, 1, 2, 3, 4, 5 and 6 hr) and suspension concentrations (1, 5, 7, 10 and 15%). Absorbance at 280 nm, brix and ACE inhibitory activity of soybean protein isolate hydrolysates were investigated. Absorbance at 280 nm and brix of Alcalase 2.4 L treatment were higher than other enzyme treatments. The optimum condition of hydrolysis was Alcalase 2.4 L, 1% enzyme concentration, 5% suspension concentration for 4 hr. $IC_{50}$ value of ACE inhibitory activity of soybean protein isolate hydrolysate was $79.94 {\mu}g/mL$. These results suggest that soybean isolate protein hydrolysate from Alcalase 2.4 L may be of benefit for developing antihypertensive therapeutics.

Assessment of the Inhibitory Activity of Peptide Extracts from Hanwoo Musculus Longissimus on Angiotensin I-Converting Enzyme

  • Seol, Kuk-Hwan;Song, Ji-Hye;Prayad, Thirawong;Kim, Hyoun-Wook;Jang, Ae-Ra;Ham, Jun-Sang;Oh, Mi-Hwa;Kim, Dong-Hun;Lee, Moo-Ha
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.663-667
    • /
    • 2011
  • This study was performed to measure the angiotensin I-converting enzyme (ACE) inhibitory activity of peptide extracts derived from the enzymatic proteolysis of Hanwoo Musculus longissimus (M. longissimus) during cold storage. Thermolysin (80 ppm, w/w) and protease type XIII (100 ppm, w/w) were injected separately or in combination for the enzymatic proteolysis of sarcoplasmic and myofibrillar proteins prior to storage at $5^{\circ}C$ (T1) or at $-1^{\circ}C$ (T2) in a chilling room for 9 days. Beef injected with thermolysin (E2) and thermolysin+protease type XIII (E3) showed a significantly higher degree of hydrolysis at both storage temperatures (p<0.05). During the storage period, T1E2 at day 6 and T1E3 at day 9 showed the strongest ACE inhibitory activity with sarcoplasmic and myofibrillar protein proteolysates. Macromolecules greater than 10,000 Da were removed by ultra filtration, and the filtrates were separated into fractions using gel filtration. Five and three major fractions were collected from S-T1E2-6 and M-T1E3-9 extracts, respectively, and the $4^{th}$ fraction of the S-T1E2-6 extracts showed the highest ACE inhibitory rate of $61.96{\pm}7.41%$.

Inhibitory Effects of Eucommia ulmoides Extract on Angiotensin Converting Enzyme (두충차 추출물의 Angiotensin Converting Enzyme 저해효과)

  • Shon, Mi-Yae;Nam, Sang-Hae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1511-1516
    • /
    • 2007
  • To assess a potential possibility of Eucommia ulmoides (EU) as a functional food, anti-hypertensive materials of EU were isolated by silica gel column, thin layer and reverse phase column chromatographies, and then ACE (angiotensin-converting emzyme) inhibitory activities of different parts (leaf, bark, and stem) were investigated. The isolated compound, 8A, was pinoresinol-4,4'-di-O-${\beta}$-D-glucoside (below PDG) originating from Eucommial Cortex and its purity was 95.64%. Of all the samples tested, PDG in raw bark and roasted bark was the highest level at 135.13 mg% and 163.67 mg%, respectively. In ACE inhibitory activity at 10 mg/mL of EU extracts, roasted leaf, raw bark, and roasted bark were 77.56%, 75.73%, and 75.73%, respectively. ACE activities at 1 mg/mL were shown to be 91.87% for PDG, 97.06% for $Enalapril^{(R)}$, and 90.32% for $Captopril^{(R)}$.