• 제목/요약/키워드: Angiotensin I-converting enzyme (ACE) inhibitory activity

검색결과 141건 처리시간 0.022초

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • 제5권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

매생이 유래 올리고당의 추출 분리 및 Angiotensin I Converting Enzyme 저해능 분석 (Analysis of Angiotensin I Converting Enzyme Inhibitory Activity of Oligosacchride Extracted from Capsosiphon fulvescens)

  • 김현우;이중헌
    • KSBB Journal
    • /
    • 제28권2호
    • /
    • pp.131-136
    • /
    • 2013
  • The hydrolysates prepared with various enzyme digestion of Capsosiphon fulvescens were used to measure the inhibitory effects against angiotensin I converting enzyme (ACE). The commercially available enzymes such as Celluclast, Viscozyme, Lysing enzyme, Flavourzyme, Alcalase and Pectinex were used to digest C. fulvescens and produce hydrolysates. The maximum ACE inhibitory activity was observed using Alcalase hydrolysis (72.9%). The optimal conditions of Alcalase extraction were pH 8.0 and extraction time for 12 hr. The hydrolysates were fractionated using preparative-LC and anion-exchange chromatography on DEAE-cellulose and the fraction B and B-2 were isolated. The ACE inhibitory activity of fraction B-2 by anion-exchange chromatography was 82.6%. The molecular weight of fraction B-2 estimated using size exclusion chromatography was about 1 kDa. The monosaccharide composition of the fraction B-2 was determined to be mannose (1.1%), glucuronic acid (1.3%), galactose (1.3%) and glucose (96.3%).

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

  • Kim, Sung-Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제15권3호
    • /
    • pp.183-190
    • /
    • 2012
  • The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates, the peptic hydrolysate exhibited the highest ACE inhibitory activity. We attempted to purify ACE inhibitory peptides from peptic hydrolysate using high performance liquid chromatography on an ODS column. The $IC_{50}$ value of purified ACE inhibitory peptide was $63.9{\mu}M$. The amino acid sequence of the peptide was identified as Lys-Val-Asn-Gly-Pro-Ala-Met-Ser-Pro-Asn-Ala-Asn, with a molecular weight of 1,220 Da, and the Lineweaver-Burk plots suggested that they act as a competitive inhibitor against ACE. Our study suggested that novel ACE inhibitory peptides purified from rainbow trout muscle protein may be beneficial as anti-hypertension compounds in functional foods.

Screening of Extracts from Red Algae in Jeju for Potentials MarineAngiotensin - I Converting Enzyme (ACE) Inhibitory Activity

  • 차선희;이기완;전유진
    • ALGAE
    • /
    • 제21권3호
    • /
    • pp.343-348
    • /
    • 2006
  • This study was conducted to screen in vitro angiotensin - I converting enzyme (ACE) inhibitory activities of methanol (MeOH) and aqueous extracts at 20°C and 70°C, respectively, prepared from twenty-six red algae obtained from the coast of Jeju Island in Korea. Among aqueous extracts at 20°C (20AE) from red algae Lomentaria catenata showed the strongest ACE inhibitory activity and Lithophyllum okamurae recorded the second highest activity. From MeOH extract at 20°C (20ME) Ahnfeltiopsis flabelliformis possessed the strongest ACE inhibitory activity. Remarkable activities from MeOH extracts at 70°C (70ME) were observed in Grateloupia filicina, Sinkoraena lancifolia and Grateloupia lanceolata. However, no significant activity was found in aqueous extracts at 70°C (70AE). The IC50 values, which are concentrations required to inhibit 50% activity of ACE, for ACE inhibitory activities of 20AE from Lithophyllum okamurae and L. catenata were 13.78 and 12.21 μg mL–1, respectively. The IC50 values of 20ME from A. flabelliformis and Laurencia okamurae were 13.84 and 106.15 μg mL–1. Those of the 70ME from Bonnemaisonia hamifera, Grateloupia filicina, Sinkoraena lancifolia, G. lanceolata, Gracilaria vermiculophylla and L. okamurae ranged from 25.82 to 124.69 μg mL–1.

한우 등심과 우둔에서 추출한 Myosin B의 효소적 가수분해물의 단백질 변화와 Angiotensin -I- Converting Enzyme(ACE) 저해효과 (Evaluation of Angiotensin -I- Converting Enzyme Inhibitory Activity and Protein Changes of Enzymatic Hydrolysate Extracted from Hanwoo Loin and Round Myosin B)

  • 김영주;진구복
    • Journal of Animal Science and Technology
    • /
    • 제49권1호
    • /
    • pp.129-136
    • /
    • 2007
  • 본 실험은 한우 육단백질의 가수분해물로부터 항고혈압 활성을 측정하기 위하여 실시한 것으로서 한우 등심과 우둔으로부터 추출한 myosin B를 pepsin으로 가수분해하여 가수분해물들의 전기영동 결과, 가열처리와 가수분해 시간의 증가에 따라 단백질의 소실이 증가하였다. 항 고혈압 활성을 측정한 결과 10 ug/ml의 희석된 가수분해물의 ACE 억제효과는 1시간 이상 가수분해 시키면 약 40%의 억제율을 가졌다. 가수분해물 원액으로 ACE 억제효과를 살펴본 결과에서는 등심이 우둔보다 높았으며 (p<0.05), 비가열 가수분해물이 가열한 가수분해물 보다 억제율이 높게 나타났다 (p<0.05). 또한, 가수분해 시간별 처리구에서는 1시간 이상 가수분해 시키면 약 70% 이상의 억제율을 갖는 것으로 나타나 한우의 myosin B를 1시간 이상 가수분해하면 ACE 억제율이 증진되는 것으로 사료된다.

식품단백질 효소가수분해물의 Angiotensin-I 전환효소 저해작용 (Angiotensin-I Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Food Proteins)

  • 염동민;노승배;이태기;김선봉;박영호
    • 한국식품영양과학회지
    • /
    • 제22권2호
    • /
    • pp.226-233
    • /
    • 1993
  • 효소에 의한 가수분해로 식품단백질로부터 생리활성 peptide의 생성을 밝히기 위한 연구의 일환으로 효소에 의한 단백질 가수분해물의 ACE 저해작용을 검토한 결과는 다음과 같다. 1. 가수분해에 따른 ACE 저해능은 가수분해 8시간까지는 급격히 증가하다가 그 후로는 완만하게 증가하였으며, 특히 복합효소, bromelain 및 pepsin등에 의해 우수하게 나타났다. 그러나 trypsin 및 $\alpha$-chymotrypsin에 의한 egg albumin 및 casein 가수분해시에는 가수분해 8시간 이후에는 오히려 감소하는 경향을 나타내었다. 2. 단백질 가수분해물의 ACE 저해능은 첨가량의 증가와 함께 우수한 것으로 나타났으며, 가열에 대하여 비교적 안정한 것으로 나타났다. 3. 단백질 가수분해물의 아미노산 조성은 거의 유사한 것으로 나타났으며, 특히 glutamic acid의 함량이 월등히 많은 것으로 나타났다. 그러나 egg albumin 가수분해물의 경우는 glutamic acid의 함량이 적은 반면 alanine 및 cysteine의 함량이 다소 많은 것으로 나타났다 4. Gel 여과에 의한 단백질 가수분해물의 획분별 ACE 저해작용은 서로 비슷한 획 분에서 나타났으며 이 때의 분자량은 1,400부근으로 나타났다. 5. Gel 여과에 의한 ACE 저해작용 획분의 아미노산 조성은 서로 다른 것으로 나타났다.

  • PDF

Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity

  • Wijesinghe, W.A.J.P.;Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • 제5권2호
    • /
    • pp.93-100
    • /
    • 2011
  • Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an $IC_{50}$ value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotalnnins with ACE inhibitory activity for utilization in production of functional foods.

Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity of Elk (Cervus elaphus) Velvet Antler

  • Karawita Rohan;Park, Pyo-Jam;Siriwardhana Nalin;Jeon, Byong-Tae;Moon, Sang-Ho;Ahn, Duk-Kyun;Chos, Somi-K.;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제10권3호
    • /
    • pp.239-243
    • /
    • 2005
  • Angiotensin I-converting enzyme (ACE) inhibitory activities of elk antler hydrolysates prepared with three kinds of proteases, pepsin, trypsin and $\alpha-chymotrypsin$, were investigated. The ACE inhibitory activity of the pepsinolytic hydrolysate was the highest with an $IC_{50}$ value of $9.3\mu g/mL.$ In addition, three kinds of pepsinolytic hydrolysates with relatively high molecular weights (over 10,000 Da), medium molecular weights (5,000 to 10,000 Da), and low molecular weights (below 5,000 Da) were fractionated using an ultrafiltration membrane system. The below 5,000 Da hydrolysate exhibited the highest ACE inhibitory activity. These results indicate that the pepsinolytic hydrolysates of elk velvet antler could be a good source of peptides with ACE inhibitory activity.

Production of Angiotensin-I Converting Enzyme Inhibitory Hydrolysates from Egg Albumen

  • Kim, H.S.;Ham, J.S.;Jeong, S.G.;Yoo, Y.M.;Chae, H.S.;Ahn, C.N.;Lee, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권9호
    • /
    • pp.1369-1373
    • /
    • 2003
  • ACE (Angiotensin-I converting enzyme) inhibitory peptides derived from foods are thought to suppress high blood pressure by inhibiting ACE. We tried to make efficient production of the ACE inhibitory hydrolysate from egg albumen. A hydrolysate digested by neutrase presented the highest ACE inhibitory activity ($IC_50\;value=256.35{\mu}g/ml$) and the proper proteolysis was occurred by 1.0% enzyme addition and 4 h incubation at $47^{\circ}C$. Antihypertensive effect of neutrase hydrolysate was investigated in spontaneously hypertensive rats (SHR, n=5). Systolic blood pressure (SBP) was decrease by 6.88% (-14.14 mmHg, p<0.05) at 3 h after oral administration of 300 mg/kg body weight, and by 13.33% (-27.72 mmHg, p<0.05) by emulsified hydrolysate. These results showed that it is very effective to utilize egg albumen as a protein source for the production of ACE inhibitory peptides. However, further studies are required to investigate the methods to increase recovery yield and the isolation of active peptide is necessary for determining its sequence responsible for ACE inhibitory activity.

오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제 (Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin)

  • 이정권;전중균;변희국
    • 한국수산과학회지
    • /
    • 제44권2호
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.