• Title/Summary/Keyword: Angiotensin I-converting enzyme(ACE) inhibition activity

Search Result 41, Processing Time 0.031 seconds

Angiotensin-I Converting Enzyme Inhibitory Activity by the Component of Traditional Tea Materials (기호음료 성분의 Angiotensin-I 전환효소 저해작용)

  • Do, Jeong-Ryong;Kim, Seon-Bong;Park, Yeung-Ho;Kim, Dong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.456-460
    • /
    • 1993
  • The present study was conducted to investigate Angiotensin I-converting enzyme(ACE) inhibition activity of the components of traditional tea materials in Korea. Angiotensin I-converting enzyme(ACE) inhibition activity of water soluble fractions obtained from the samples were strong in Zingiberis rhizoma, Acantopanacis cortex, Schizandrae fructus, Perilla semen, Cassiae torae semen, Zizyphy fructus in order. ACE inhibition activity of fractions obtained from methanol extract of Cassiae torae semen were strong in ethyl acetate fraction, ethyl ether fraction, water fraction, chloroform fraction in order. Compound C showed the strongest ACE inhibition activity among compound A, B, C, D separated from Cassiae torae semen, but Compound C separated from Cassiae torae semen was lower than bradykinin in the ACE inhibition activity.

  • PDF

Analysis of Angiotensin I Converting Enzyme Inhibitory Activity of Oligosacchride Extracted from Capsosiphon fulvescens (매생이 유래 올리고당의 추출 분리 및 Angiotensin I Converting Enzyme 저해능 분석)

  • Kim, Hyun-Woo;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • The hydrolysates prepared with various enzyme digestion of Capsosiphon fulvescens were used to measure the inhibitory effects against angiotensin I converting enzyme (ACE). The commercially available enzymes such as Celluclast, Viscozyme, Lysing enzyme, Flavourzyme, Alcalase and Pectinex were used to digest C. fulvescens and produce hydrolysates. The maximum ACE inhibitory activity was observed using Alcalase hydrolysis (72.9%). The optimal conditions of Alcalase extraction were pH 8.0 and extraction time for 12 hr. The hydrolysates were fractionated using preparative-LC and anion-exchange chromatography on DEAE-cellulose and the fraction B and B-2 were isolated. The ACE inhibitory activity of fraction B-2 by anion-exchange chromatography was 82.6%. The molecular weight of fraction B-2 estimated using size exclusion chromatography was about 1 kDa. The monosaccharide composition of the fraction B-2 was determined to be mannose (1.1%), glucuronic acid (1.3%), galactose (1.3%) and glucose (96.3%).

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity

  • Wijesinghe, W.A.J.P.;Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.5 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an $IC_{50}$ value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotalnnins with ACE inhibitory activity for utilization in production of functional foods.

Angiotensin Converting Enzyme Inhibitory Activity of BR-900317 in vivo, and Antihypertensive Effect of its Single Oral Administration on Blood Pressure and Effect on the Renin-angiotensin System in Hypertensive Model Rats (SHR, RHR) (BR-900317의 In vivo에 있어서 Angiotensin 변환효소 저해작용 밀 고혈압 model rat (SHR, RHR)에 있어 단회 경구투여에 의한 강압작용)

  • 장경진;김지한;백우현
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.220-225
    • /
    • 1993
  • Effect of BR-900317 on the angiotensin I-induced pressor response in pithed rats and the effects of its single oral administration on plasma angiotensin converting enzyme (ACE) activities in normotensive rats and on the cardiovascular system in hypertensive model rats (SHR, RHR), were compared with those of captopril. BR-900317 attenuated the angiotensin I-induced pressor effects in pithed rats. In a single oral dose administration study, BR-900317 inhibited the plasma ACE activities in a dose-dependent fashion. Duration of the action of BR-900317 was similar to that of captopril. BR-900317 produced antihypertensive effect in spontaneously hypertensive rats and dose-dependent antihypertensive effect in 2-kidney Goldblatt hypertensive rats without affecting heart rate. These results suggest that the main mechanism of the antihypertensive effect of BR-900317 is the suppression of angiotensin II production due to the inhibition of the ACE.

  • PDF

Angiotensin I-Converting Enzyme Inhibitory Activity of the ${\kappa}-Casein$ Fragments Hydrolysated by Chymosin, Pepsin, and Trypsin (${\kappa}-Casein$의 Chymosin, Pepsin 및 Trypsin 가수분해물에 대한 안지오텐신 변환효소 저해효과의 탐색)

  • Oh, Se-Jong;Kim, Sae-Hun;Kim, Sang-Kyo;Baek, Young-Jin;Cho, Kyung-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1316-1318
    • /
    • 1997
  • The isolated ${\kappa}-Casein$ on gel permeation chromatography was hydrolyzed by chymosin, trypsin, and pepsin. The 3% TCA soluble portion of the hydrolysates were dialyzed on the angiotensin-I converting enzyme (ACE) inhibition rate (%,) and inhibitory activity $(IC_{50})$ were determined. The trypsin hydrolysate exhibited the highest ACE inhibition rate while the chymosin hydrolysation showed the lowest activity. The hydrolysate was dialyzed using dialysis membrane with various molecular cut-offs, and $IC_{50}$ was determined. As the pore size of the dialysis tubing increased, the ACE inhibitory activity decreased.

  • PDF

Anti-hypertensive Activity of New Potato(Solanum tuberosum) Variety of Gui Valley Via Inhibition of Angiotensin Converting Enzyme (안지오텐신 전환효소활성 저해에 의해 항고혈압 효과를 갖는 신품종 감자 구이벨리 추출물)

  • Kim, Kwan-Hyun;Kim, Sun-Hee;Lee, Eun-Ok;Kwon, Hyun-Jung;Choi, Jong-Won;Lim, Hak-Tae;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.93-96
    • /
    • 2009
  • This study was attempted to investigate the anti-hypertensive activity of Solanum tuberosum, cv. Gui valley. Ethanol extract of Gui vally (EGV) increased free radical scarvenge activity up to 91.6% of control at $200{\mu}g/m{\ell}$. It's anti-oxidant activity is similar to 10 uM of ascorbic acid, well known as antioxidant. EGV inhibited Angiotensin-I-converting enzyme (ACE) activity in vitro. ACE plays a important role in regulation of blood pressure and ACE inhibitors are important for the treatment of hypertension. Anti-hypertensive activity of EGV in vivo was assessed in lead acetate (LAT)-induced hypertensive rats for 8 weeks. Elevated blood pressure in control group was significantly decreased by EGV at 200 mg/kg. Also, ACE activity in blood was also suppressed by EGV treatment. Taken together, these results suggest that EGV has an anti-hypersive activity via inhibition of ACE and can be used for the treatment or prevention of hypertension.

Angiotensin- I Converting Enzyme Inhibitory Properties of Bovine Casein Hydrolysates in Different Enzymatic hydrolysis Conditions (효소가수분해 조건에 따른 우유 케이신의 Angiotensin-I 전환효소 저해효과)

  • 김현수;인영민;정석근;함준상;강국희;이수원
    • Food Science of Animal Resources
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Angiotensiri-I converting enzyme(ACE) catalyst the removal of the C-terminal dipeptide from the angiotensin-I to give the angiotensin-II, a potent peptide that causes constriction of regulation of blood pressure. Recently, ACE inhibitor peptides have been isolated from enzymatic digests of food protein. The aim of this study was to identify bovine casein hydrolysates with ACE inhibitory properties in different enzymatic hydrolysis conditions. The casein were hydrolyzed neutrase, alcalase, protamax, flavourzyme, premed 192, sumizyme MP, sumizyme LP and pescalase alone and with an enzyme combination. Premed 192 produced ACE inhibitory peptides most efficiently. In order to ACE inhibitory peptide produced enzymatic hydrolysis condition were premed 192 added to casein ratio of 1:100(w/w), and incubated at 47$\^{C}$ for 12hrs. Casein hydrolysate gave 50% inhibition(IC$\_$50/ value) of ACE activity at concentration with 248ug/ml(general method) and 265ug/ml(pretreatment method) respectively.

Effects of Ginkgo biloba Extract (EGb 761) on the Enalapril-induced ACE Inhibition in SHRs (SHR에 있어 Enalapril의 ACE억제효과에 대한 Ginkgo biloba Extract(EGb 761)의 영향)

  • 이영미;염윤기;신완균;손의동;안형수
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Drug inetraction between of enalapril-induced angiotensin converting enzym) inhibitory effect and Ginkgo biloba Ext.-induced antioxidant action was evaluated in spontaneously hypertensive rats. Combination treatment of enalapril (20 mg/kg/day p.o.) and Ginkgo biloba Ext. (60 mg/kg/day, p.o.) for 6 weeks in drinking water to SHRs resulted the inhibition of ACE activity in lung tissue, angiotensin I-induced pressure response and plasma angiotensin II concentration as similar to enalapril alone treatment. But these effects were sustained after 1 week withdrawal of enalapril and Ginkgo biloba Ext. co-administeration. Also, coadministered group did not increase the concentration of bradykinin in lung tissue, which were different from enalapril alone treated group. Co-administration of enalapril and Ginkgo biloba Ext. inhibited the hemolysis induced by UV B type, even Ginkgo biloba Ext. alone treated group did not. These results suggested that Ginkgo biloba Ext. sustained ACE inhibitory effect and reduced the inhibitory effect of bradykinin inactivation induced by enalapril, meanwhile, enalapril increased the antioxidant effect of Ginkgo biloba Ext.

  • PDF

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.