• Title/Summary/Keyword: Angiogenesis inhibitor

Search Result 114, Processing Time 0.027 seconds

High Throughput Screening on Angiogenesis Inhibitor and Promoter of Medicinal Plants using a Protein Microarray Chip

  • In, Dong-Su;Lee, Min-Su;Bang, Kyong-Hwan;Kim, Ok-Tae;Hyun, Dong-Yun;Ahn, Young-Sup;Cha, Seon-Woo;Seong, Nak-Sul;Kim, Eung-Youn;Shin, Yoo-Soo;Kang, In-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • The effects of angiogenesis inhibitor from the extract libraries of Korean and Chinese medicinal plants were investigated using a protein microarray chip. Protein chip was constructed by immobilization of integrin ${\alpha}_5{\beta}_1$ on protein chip base plates and employed far screening active extracts that inhibit the integrin-fibronectin interaction from the extract libraries. The 100 extracts of medicinal plants were obtained from extract bank of National Institute of Crop Science, RDA. The 14 extracts among 100 extract libraries were shown efficient inhibition activity for the interaction between integrin-fibronectin. The medicinal plants of 14 extracts were Vitex negundo var. incisa (Lam.) C.B. Clarke, Epimedium koreanum Nakai, Cedrela sinensis A. Juss, Ipomea aquatica Forsk, Schisandra chinensis Baill, Pulsatilla koreana Nakai, Paeonia lactiflora Pall. var.hortensis Makino, Oenothera odorata, Allium chinense, Allium victorialis var. platyphyllum MAKINO, Polygonatum odoratum Druce var. pluriflorum Ohwi, Hosta lancifolia, Agrimonia pilosa L. var. japonica Nakai and Potentilla chinensis SER. The Paeonia lactiflora, Oenothera, and Agrimonia pilosa from these 14 extracts libraries were shown strong inhibition activity of integrin ${\alpha}_5{\beta}_1$.

Development of Evaluating Ways for the Efficacy of Anti-VEGF Biopharmaceuticals (VEGF 제어의약품의 효능 평가법 개발)

  • Nam, Eun-Hee;Jeon, Seong-Hyun;Lee, Wha-Jung;Seo, Dong-Wan;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.203-208
    • /
    • 2007
  • Background: Angiogenesis mediated by VEGF constitutes a new target for anti-cancer therapy which has explored through different ways of intervention aiming at the blocking of the tumoral angiogenesis. In the present study, we developed the assays by which efficacies of anti-VEGF inhibitor candidates are evaluated at the various levels. Methods & Results: First, we developed two sandwich ELISAs using coated anti-VEGF Ab and soluble Flt-1 receptor fusion protein (sFlt-1/Fc). As low as 200 pg/ml of hVEGF diluted in human sera was detectable by these assays. In addition, we found that VEGF inhibitors ($2{\mu}g/ml$ of either anti-VEGF Ab or sFlt-1/Fc) completely block 5 ng/ml VEGF in these ELISAs. Subsequently, two bioassays, wound healing and HUVEC tube formation assays, revealed that anti-VEGF Ab $(1{\mu}g/ml)$ & sFlt-1/Fc Ab $(1{\mu}g/ml)$, or SU5416 (VEGFR tyrosine kinase inhibitor, $1{\mu}M$) prevents the activity of VEGF $(1{\sim}10ng/ml)$. Finally, secretion of MMP-9 by VEGF-stimulated macrophages was abolished by treatment of anti-VEGF Ab $(1{\mu}g/ml)$ in gelatin zymography. Conclusion: ELISAs together with bioassays developed in this study are appropriate for evaluation of the efficacy of inhibitors of VEGF.

Mutation of Angiogenesis Inhibitor TK1-2 to Avoid Antigenicity In Vivo

  • Lee Sang-Bae;Kim Hyun-Kyung;Oh Ho-Kyun;Hong Yong-Kil;Joe Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • Tissue-type plasminogen activator (t-PA) is a multidomain serine protease containing two kringle domains, TK1-2. Previously, Pichia-derived recombinant human TK1-2 has been reported as an angiogenesis inhibitor although t-PA plays an important role in endothelial and tumor cell invasion. In this work, in order to improve in vivo efficacy of TK1-2 through elimination of immune reactivity, we mutated wild type TK1-2 into non-glycosylated form (NE-TK1-2) and examined whether it retains anti-angiogenic activity. The plasmid expressing NE-TK1-2 was constructed by replacing $Asn^{l17}\;and\;Asn^{184}$ with glutamic acid residues. After expression in Pichia pastoris, the secreted protein was purified from the culture broth using S-sepharose and UNO S1-FPLC column. The mass spectrum of NE-TK1-2 showed closely neighboring two peaks, 19631.87 and 19,835.44 Da, and it migrated as one band in SDS-PAGE. The patterns of CD-spectra of these two proteins were almost identical. Functionally, purified NE-TK1-2 was shown to inhibit endothelial cell migration in response to bFGF stimulation at the almost same level as wild type TK1-2. Therefore, the results suggest that non-glycosylated NETK1-2 can be developed as an effective anti-angiogenic and anti-tumor agent devoid of immune reactivity.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

RalA-binding Protein 1 is an Important Regulator of Tumor Angiogenesis (Tumor angiogenesis에 있어서 RLIP76의 중요성)

  • Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Tumor angiogenesis is important in tumorigenesis and therapeutic interventions in cancer. To know inhibitor and effector of tumor angiogenesis in cancer, the specific gene of tumor and angiogenesis may develop the mechanisms of cancer suppression and therapy. Recently, we described the role of RalA-binding protein 1 (RLIP76) in tumor angiogenesis. Tumor vascular volumes were diminished, and vessels were fewer in number, shorter, and narrower in RLIP76 knockout mice than in wild-type mice. Moreover, angiogenesis in basement membrane matrix plugs was blunted in the knockout mice in the absence of tumor cells, with endothelial cells isolated from the lungs of these animals exhibiting defects in migration, proliferation, and cord formation in vitro. RLIP76 is expressed in most human tissues and is overexpressed in many tumor types. In addition, the protein regulates tumorigenesis and angiogenesis in vivo and in vitro. As the export of chemotherapy agents is a prominent cellular function of RLIP76, it is a major factor in mechanisms of drug resistance. Moreover, RLIP76 acts as a selective effector of the small GTPase, R-Ras, and regulates R-Ras signaling, leading to cell spreading and migration. Furthermore, in skin carcinogenesis, RLIP76 knockout mice are resistant, with tumors that form showing diminished angiogenesis. Thus, RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.

Anti-Invasive and Anti-Angiogenic Effects of Xanthohumol and Its Synthetic Derivatives

  • Kim, Jung-Ae;Kang, You-Ra;Thapa, Dinesh;Lee, Jong-Suk;Park, Min-A;Lee, Kyung-Hee;Lyoo, Won-Seok;Lee, Yong-Rok
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.422-429
    • /
    • 2009
  • Invasion and metastasis is the main cause of cancer mortality. Angiogenesis is a prerequisite for the tumor growth and metastasis. Matrix metalloproteinases (MMPs) are the key enzymes playing in the invasive growth and metastasis of cancer as well as angiogenesis. Xanthohumol, a prenylated chalcone of the Hop plant (Humulus lupulus L), has been reported to suppress cancer invasion and angiogenesis. In the present study, we investigated the antiinvasive effects of xanthohumol (1) and its synthetic derivatives, 4'-O-methylxanthohumol SEM ether (2), xanthohumol C (3), and xanthohumol C MOM ether (4) in relation to MMP expression in HT-1080 human fibrosarcoma cells. The compound 1 and its derivative, 3 and 4, significantly inhibited serum-induced HT-1080 cell invasion, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-enhanced activity and expression level of MMP-2 and MMP-9 in a concentration-dependant manner. In addition, they inhibited TPA-enhanced expression of MT1-MMP with relatively weak inhibition in tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 level. The compound 1 significantly decreased the cell viability, whereas the derivatives, 2 and 3 showed no cytotoxicity, and compound 4 showed slight cytotoxicity in the cells. Furthermore, in a chick chorioallantoic membrane (CAM) assay, the derivatives 3 and 4 dose-dependently suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis, which is similar to that of compound 1. Taken together, the results indicate that compounds 3 and 4 may be valuable anti-angiogenic agents in the treatment of chronic diseases such as cancer and inflammation working through suppression of MMP-2 and MMP-9.

A Novel Anti-cancer Agent, SJ-8029, Inhibits Angiogenesis and Induces Apoptosis

  • Yi Eui-Yeun;Jeong Eun-Joo;Song Hyun-Seok;Kang Dong-Wook;Joo Jeong-Ho;Kwon Ho-Seok;Lee Sun-Hwan;Park Si-Kyung;Chung Sun-Gan;Cho Eui-Hwan;Kim Yung-Jin
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.161-170
    • /
    • 2006
  • A new piperazine derivative, 8J-8029, is a synthetic anti-cancer agent which exhibits both microtubule and topoisomerase II inhibiting activities. In this study, we investigated the ability of 8J-8029 for anti-angiogenesis and apoptosis. 8J-8029 decreased the bFGF-induced angiogenesis in the CAM and the mouse Matrigel implants, in vivo. 8J-8029 inhibited the proliferation, migration, invasion, tube fonnation, and expression of MMP-2 in BAECs. In addition, 8J-8029 reduced the cell viability in HepG2 cells, caused the production of fragmented DNA and the morphological changes corresponding to apoptosis. 8J-8029 also elicited the release of cytochrome c and the activation of caspase-3. Taken together, these results suggest 8J-8029 may be a candidate for anti-cancer agent with the ability to inhibit the angiogenesis of endothelial cells and to induce the apoptosis of tumor cells.

  • PDF

Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis

  • Yoon, Sang-Oh;Park, Soo-Jin;Yun, Chang-Hyun;Chung, An-Sik
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.128-137
    • /
    • 2003
  • Matrix metalloproteinases (MMPs), zinc dependent proteolytic enzymes, cleave extracellular matrix (ECM: collagen, laminin, firbronectin, etc) as well as non-matrix substrates (growth factors, cell surface receptors, etc). The deregulation of MMPs is involved in many diseases, such as tumor metastasis, rheumatoid arthritis, and periodontal disease. Metastasis is the major cause of death among cancer patients. In this review, we will focus on the roles of MMPs in tumor metastasis. The process of metastasis involves a cascade of linked, sequential steps that involve multiple host-tumor interactions. Specifically, MMPs are involved in many steps of tumor metastasis. These include tumor invasion, migration, host immune escape, extravasation, angiogenesis, and tumor growth. Therefore, without MMPs, the tumor cell cannot perform successful metastasis. The activities of MMPs are tightly regulated at the gene transcription levels, zymogen activation by proteolysis, and inhibition of active forms by endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP), and RECK. The detailed regulations of MMPs are described in this review.

Human amnion-derived mesenchymal stem cells induced osteogenesis and angiogenesis in human adipose-derived stem cells via ERK1/2 MAPK signaling pathway

  • Wang, Yuli;Chen, Xichen;Yin, Ying;Li, Song
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.194-199
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) have shown great potential in treating bone deficiency. Human adipose-derived stem cells (HASCs) are multipotent progenitor cells with multi-lineage differentiation potential. Human amnion-derived mesenchymal stem cells (HAMSCs) are capable of promoting osteogenic differentiation of MSCs. In this study, we investigated the effect of HAMSCs on HASCs by a transwell co-culture system. HAMSCs promoted proliferation, osteogenic differentiation, angiogenic potential and adiponectin (APN) secretion of HASCs. Moreover, the positive effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway. These observations suggested that HAMSCs induced bone regeneration in HASCs via ERK1/2 MAPK signaling pathway.

Anti-angiogenic activity of conjugated linoleic acid on the basic fibroblast growth factor-induced angiogenesis

  • Moon, Eun-Joung;Lee, You-Mie;Kim, Kyu-Won
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.2-337.2
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. Cancer cells produce various angiogenic factors which stimulate host vascular endothelial cell mitogenesis and chemotaxis for their growth and metastasis. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor that is expressed in many tumors. In this study. we found that CLA decreased bFGF-induced endothelial cell proliferation and DNA synthesis in a dose-dependent manner. However, CLA did not inhibit endothelial cell migration. Furthermore CLA showed a potent inhibitory effect on embryonic vasculogenesis and bF GF-induced angiogenesis in vivo. Collectively. these results suggest that CLA selectively inhibis the active proliferating endothelial edll induced by bFGF. which may explain its anti-carcinogenix properties in vivo.

  • PDF