DOI QR코드

DOI QR Code

Anti-Invasive and Anti-Angiogenic Effects of Xanthohumol and Its Synthetic Derivatives

  • Published : 2009.10.31

Abstract

Invasion and metastasis is the main cause of cancer mortality. Angiogenesis is a prerequisite for the tumor growth and metastasis. Matrix metalloproteinases (MMPs) are the key enzymes playing in the invasive growth and metastasis of cancer as well as angiogenesis. Xanthohumol, a prenylated chalcone of the Hop plant (Humulus lupulus L), has been reported to suppress cancer invasion and angiogenesis. In the present study, we investigated the antiinvasive effects of xanthohumol (1) and its synthetic derivatives, 4'-O-methylxanthohumol SEM ether (2), xanthohumol C (3), and xanthohumol C MOM ether (4) in relation to MMP expression in HT-1080 human fibrosarcoma cells. The compound 1 and its derivative, 3 and 4, significantly inhibited serum-induced HT-1080 cell invasion, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-enhanced activity and expression level of MMP-2 and MMP-9 in a concentration-dependant manner. In addition, they inhibited TPA-enhanced expression of MT1-MMP with relatively weak inhibition in tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 level. The compound 1 significantly decreased the cell viability, whereas the derivatives, 2 and 3 showed no cytotoxicity, and compound 4 showed slight cytotoxicity in the cells. Furthermore, in a chick chorioallantoic membrane (CAM) assay, the derivatives 3 and 4 dose-dependently suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis, which is similar to that of compound 1. Taken together, the results indicate that compounds 3 and 4 may be valuable anti-angiogenic agents in the treatment of chronic diseases such as cancer and inflammation working through suppression of MMP-2 and MMP-9.

Keywords

References

  1. Albini, A., Dell'Eva, R., Vené, R., Ferrari, N., Buhler, D. R., Noonan, D. M. and Fassina, G. (2006). Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 20, 527-529. https://doi.org/10.1096/fj.05-5128fje
  2. Barbara, V., Lara, D., Veerle Van, M., Herman, D., Denis De, K. and Marc, B. (2005). Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer. 117, 889-895. https://doi.org/10.1002/ijc.21249
  3. Bernardo, M. M. and Fridman, R. (2003). TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase- 2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem. J. 374, 739-745. https://doi.org/10.1042/BJ20030557
  4. Delmulle, L., Bellahcéne, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K., Heyerick, A., Castronovo, V. and De Keukeleire, D. (2006). Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13, 732-734. https://doi.org/10.1016/j.phymed.2006.01.001
  5. Edwards, J. G., McLaren, J., Jones, J. L., Waller, D. A. and O'Byrne, K. J. (2003). Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura. Brit. J. Cancer 88, 1553-1559. https://doi.org/10.1038/sj.bjc.6600920
  6. Galis, Z. S., Sukhova, G. K., Lark, M. W. and Libby, P. (1994). Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94, 2493-2503. https://doi.org/10.1172/JCI117619
  7. Gerhauser, C., Alt, A., Heiss, E., Gamal-Eldeen, A., Klimo, K., Knauft, J., Neumann, I., Scherf, H. R., Frank, N., Bartsch, H. and Becker, H. (2002). Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 1, 959-969.
  8. Halin, C. and Detmar, M. (2008). Chapter 1. Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol. 445, 1-25. https://doi.org/10.1016/S0076-6879(08)03001-2
  9. Henderson, M. C., Miranda, C. L., Stevens, J. F., Deinzer, M. L. and Buhler, D. R. (2000). In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30, 235-251. https://doi.org/10.1080/004982500237631
  10. Herron, G. S., Banda, M. J., Clark, E. J., Gavrilovic, J. and Werb, Z. (1986). Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. The Journal of Biological Chemistry. 25, 2814-2818.
  11. John, A. and Tuszynski, G. (2001). The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14-23. https://doi.org/10.1007/BF03032599
  12. Johnson, L. L., Dyer, R. and Hupe, D. J. (1998). Matrix metalloproteinases. Curr. Opin. Chem. Biol. 2, 466-471. https://doi.org/10.1016/S1367-5931(98)80122-1
  13. Lee, K. S., Jin, S. M., Lee, H. and Lee, Y. C. (2004). Imbalance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in toluene diisocyanate-induced asthma. Clin. Exp. Allergy. 34, 276-284. https://doi.org/10.1111/j.1365-2222.2004.01849.x
  14. Lee, Y. R., Li, X., Lee, S. W., Yong, C. S., Hong, M. R. and Lyoo, W. S. (2008). ChemInform abstract: concise total synthesis of biologically interesting prenylated chalcone natural products: 4-O-Methylxanthohumol (VIII), xanthohumol E (XII), and sericone (XIII). Bull. Korean Chem. Soc. 29, 1205-1210. https://doi.org/10.5012/bkcs.2008.29.6.1205
  15. Lee, Y. R. and Xia, L. (2007). ChemInform abstract: concise total synthesis of biologically interesting pyranochalcone natural products: citrunobin (Ia), boesenbergin A (Ib), boesenbergin B (IIa), xanthohumol C (IIb), and glabrachromene (IIc). Synthesis 20, 3240-3246. https://doi.org/10.1055/s-2007-990796
  16. Liabakk, N. B., Talbot, I., Smith, R. A., Wilkinson, K. and Balkwill, F. (1996). Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res. 56, 190-196.
  17. Mannello, F. and Gazzanelli, G. (2001). Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 6, 479-482. https://doi.org/10.1023/A:1012493808790
  18. McCawley, L. J. and Matrisian, L. M. (2000). Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today 6, 149-156. https://doi.org/10.1016/S1357-4310(00)01686-5
  19. Miranda, C. L., Aponso, G. L. M., Stevens, J. F., Deinzer, M. L. and Buhler, D. R. (2000a). Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1x1C7 cells. Cancer Lett. 149, 21-29. https://doi.org/10.1016/S0304-3835(99)00328-6
  20. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., Deinzer, M. L., Barnes, D. W. and Buhler, D. R. (1999). Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37, 271-285. https://doi.org/10.1016/S0278-6915(99)00019-8
  21. Miranda, C. L., Stevens, J. F., Ivanov, V., McCall, M., Frei, B., Deinzer, M. L. and Buhler, D. R. (2000b). Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 48, 3876-3884. https://doi.org/10.1021/jf0002995
  22. Monteghirfo, S., Tosetti, F., Ambrosini, C., Stigliani, S., Pozzi, S., Frassoni, F., Fassina, G., Soverini, S., Albini, A. and Ferrari, N. (2008). Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-$\kappa$B and p53 modulation. Mol. Cancer Ther. 7, 2692-2702. https://doi.org/10.1158/1535-7163.MCT-08-0132
  23. Mun-Bryce, S. and Rosenberg, G. A. (1998). Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. J. Cerebral Blood Flow Metab. 18, 1163-1172. https://doi.org/10.1097/00004647-199811000-00001
  24. Nikolic, D., Li, Y., Chadwick, L. R., Pauli, G. F. and van Breemen, R. B. (2005). Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus lupulus L.), by human liver microsomes. J. Mass Spectrom. 40, 289-299. https://doi.org/10.1002/jms.753
  25. Pan, L., Becker, H. and Gerhäuser, C. (2005). Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res. 49, 837-843. https://doi.org/10.1002/mnfr.200500065
  26. Park, B. C., Park, S. Y., Lee, J. S., Mousa, S. A., Kim, J. T., Kwak, M. K., Kang, K. W., Lee, E. S., Choi, H. G., Yong, C. S. and Kim, J. A. (2009). The anti-angiogenic effects of 1-furan-2-yl-3-pyridin-2-yl-propenone are mediated through the suppression of both VEGF production and VEGFinduced signaling. Vascul. Pharmacol. 50, 123-131. https://doi.org/10.1016/j.vph.2008.11.006
  27. Park, B. C., Thapa, D., Lee, Y. S., Kwak, M. K., Lee, E. S., Choi, H. G., Yong, C. S. and Kim, J. A. (2007). 1-Furan-2-yl-3- pyridin-2-ylpropenone inhibits the invasion and migration of HT1080 human fibrosarcoma cells through the inhibition of proMMP-2 activation and down regulation of MMP-9 and MT1-MMP. Eur. J. Pharmacol. 567, 193-197. https://doi.org/10.1016/j.ejphar.2007.04.014
  28. Plazar, J., Zegura, B., Lah, T. T. and Filipic, M. (2007). Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat. Res. 632, 1-8. https://doi.org/10.1016/j.mrgentox.2007.03.013
  29. Stevens, J. F., Miranda, C. L., Frei, B. and Buhler, D. R. (2003). Inhibition of Peroxynitrite-Mediated LDL Oxidation by Prenylated Flavonoids: The $\alpha$,$\beta$-Unsaturated Keto Functionality of 2'-Hydroxychalcones as a Novel Antioxidant Pharmacophore. Chem. Res. Toxicol. 16, 1277-1286. https://doi.org/10.1021/tx020100d
  30. Thapa, D., Lee, J. S., Park, S. Y., Bae, Y. H., Bae, S. K., Kwon, J. B., Kim, K. J., Kwak, M. K., Park, Y. J., Choi, H. G. and Kim, J. A. (2008). Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-${\kappa}B$- dependent manner. J. Pharmacol. Exp. Ther. 327, 353-364. https://doi.org/10.1124/jpet.108.141887
  31. Vanhoecke, B., Derycke, L., Van Marck, V., Depypere, H., De Keukeleire, D. and Bracke, M. (2005). Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer. 117, 889-895. https://doi.org/10.1002/ijc.21249
  32. Vogel, S., Ohmayer, S., Brunner, G. and Heilmann, J. (2008). Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg. Med. Chem. 16, 4286-4293. https://doi.org/10.1016/j.bmc.2008.02.079
  33. Westermarck, J. and Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 13, 781-792. https://doi.org/10.1096/fasebj.13.8.781
  34. Wittekind, C. and Neid, M. (2005) Cancer invasion and metastasis. Oncology 69, 14-16. https://doi.org/10.1159/000086626
  35. Woessner, Jr. J. F. (1991). Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5, 2145-2154.
  36. Yang, S. F., Yang, W. E., Kuo, W. H., Chang, H. R., Chu, S. C. and Hsieh, Y. S. (2008). Antimetastatic potentials of flavones on oral cancer cell via an inhibition of matrix-degrading proteases. Arch. Oral. Biol. 53, 287-294. https://doi.org/10.1016/j.archoralbio.2007.09.001

Cited by

  1. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells vol.1830, pp.3, 2013, https://doi.org/10.1016/j.bbagen.2012.12.005
  2. Novel anthraquinone based chalcone analogues containing an imine fragment: Synthesis, cytotoxicity and anti-angiogenic activity vol.24, pp.1, 2014, https://doi.org/10.1016/j.bmcl.2013.11.075
  3. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues vol.138, 2017, https://doi.org/10.1016/j.ejmech.2017.07.024
  4. Urokinase-Type Plasminogen Activator Induces BV-2 Microglial Cell Migration Through Activation of Matrix Metalloproteinase-9 vol.35, pp.7, 2010, https://doi.org/10.1007/s11064-010-0141-3
  5. Synthesis and Antiproliferative Activity of Minor Hops Prenylflavonoids and New Insights on Prenyl Group Cyclization vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040776
  6. Xanthohumol Impairs the PMA-Driven Invasive Behaviour of Lung Cancer Cell Line A549 and Exerts Anti-EMT Action vol.10, pp.6, 2009, https://doi.org/10.3390/cells10061484
  7. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases vol.61, pp.11, 2021, https://doi.org/10.1080/10408398.2020.1767537
  8. Neuroregenerative Potential of Prenyl- and Pyranochalcones: A Structure-Activity Study vol.84, pp.10, 2021, https://doi.org/10.1021/acs.jnatprod.1c00505