• Title/Summary/Keyword: Ang II

Search Result 334, Processing Time 0.03 seconds

The Roles of Arachidonic Acid and Calcium in the Angiotensin II-induced Inhibition of $Na^+$ Uptake in Renal Proximal Tubule Cells

  • Park, Soo-Hyun;Koh, Hyun-Joo;Lee, Yeun-Hee;Son, Chang-Ho;Park, Min-Kyoung;Lee, Young-Jae;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.83-91
    • /
    • 1999
  • Angiotensin II (ANG II) has a biphasic effect on $Na^+$ transport in proximal tubule: low doses of ANG II increase the $Na^+$ transport, whereas high doses of ANG II inhibit it. However, the mechanisms of high dose ANG II-induced inhibition on $Na^+$ uptake are poorly understood. Thus the aim of the present study was to investigate signal transduction pathways involved in the ANG II-induced inhibition of $Na^+$ uptake in the primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. ANG II $(10^{-9}\;M)-induced$ inhibition of $Na^+$ uptake was blocked by losartan $(10^{-8}\;M,\;AT_1\;antagonist),$ but not by PD123319 $(10^{-8}\;M,\;AT_2\;antagonist)$ (P<0.05). ANG II-induced inhibition of $Na^+$ uptake was also completely abolished by neomycin $(10^{-4}\;M,$ PLC inhibitor), W-7 $(10^{-4}\;M,$ calmodulin antagonist), and $AACOCF_3\;(10^{-6}\;M,\;PLA_2\;inhibitor)$ (P<0.05). ANG II significantly increased $[^3H]arachidonic$ acid (AA) release compared to control. The ANG II-induced $[^3H]AA$ release was blocked by losartan, $AACOCF_3,$ neomycin, and W-7, but not by PD123319. ANG II-induced $[^3H]AA$ release in the presence of extracellular $Ca^{2+}$ was greater than in $Ca^{2+}-free$ medium, and it was partially blocked by TMB-8 $(10^{-4}\;M,$ intracelluar $Ca^{2+}$ mobilization blocker). However, in the absence of extracellular $Ca^{2+},$ it was completely blocked by TMB-8. In addition, econazole $(10^{-6}\;M,$ cytochrome P-450 monooxygenase inhibitor) and indomethacin $(10^{-6}\;M,$ cyclooxygenase inhibitor) blocked ANG II-induced inhibition of $Na^+$ uptake, but NGDA $(10^{-6}\;M,$ lipoxygenase inhibitor) did not affect it. In conclusion, $PLA_2-mediated$ AA release is involved in ANG II-induced inhibition of $Na^+$ uptake and is modulated by $[Ca^{2+}]_i$ in the PTCs.

  • PDF

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway

  • Yang, Xiaoping;Zhu, Mei J.;Sreejayan, N.;Ren, J.;Du, Min
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.263-270
    • /
    • 2005
  • Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai;Yu, Lamei;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.667-674
    • /
    • 2017
  • Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating SIRT1

  • Kang, Eun Sil;Kim, Hyo Juong;Han, Sung Gu;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 2020
  • Cellular senescence is associated with age-related vascular disorders and has been implicated in vascular dysfunctions. Here, we show that duck oil-loaded nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control nanoemulsion (NE), DO-NE significantly inhibited the activity of senescence-associated β-galactosidase, which is a biomarker of cellular senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also dose-dependently rescued Ang II-induced repression of SIRT1 expression, indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor sirtinol elicited the opposite effect. These findings indicate that DO-NE inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging triggered by Ang II.

Interaction between norepinephrine and angiotensin II on Na+ uptake in primary cultured rabbit renal proximal tubule cells (초대배양한 토끼 신장 근위세뇨관세포의 Na+ uptake에 대한 norepinephrine 과 angiotensin II의 상호작용)

  • Park, Soo-hyun;Koh, Hyun-ju;Han, Ho-jae
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.525-534
    • /
    • 1998
  • 신장 근위세뇨관세포들은 사구체에서 여과된 물질의 재흡수, 분비 및 대사에 관여하는 여러 호르몬들의 수용체들을 가지고 있다. 이들중에서 norepinephrine(NE)과 angiotensin II(ANG II)는 $Na^{+}/H^+$ 상호운반계를 조절함으로써 혈압조절에 관여하는 것으로 알려져 있으나 이들의 상호관계에 대해선 연구보고가 많지 않다. 본 연구는 초대배양한 토끼신장 근위세뇨관세포를 이용한 $Na^+$ uptake 실험을 통하여 NE이 어떠한 수용체를 통하여 $Na^{+}/H^+$ 상호운반계를 조절하는지 그리고 이러한 작용에 있어서 NE과 ANG II의 상호관계를 알아보고자 실시하였다. NE(>$10^{-9}M$)은 $Na^+$ uptake를 유의성 있게 증가시켰다($10^{-9}M$ NE : $27{\pm}4%$ increase vs. Control;p < 0.05). $\alpha$ 길항제(phentolamine, $10^{-10}M$)는 NE($10^{-9}M$)에 의해 유도된 $Na^+$ uptake를 유의성 있게 차단하였으나 (phentolamine+NE : $29{\pm}5%$ inhibition vs. NE ; p〈 0.05), ${\alpha}_1$ (pra-zosin, $10^{-10}M$) 및 ${\alpha}_2$ 길항제(yohimbine, $10^{-10}M$)는 부분적으로 차단하였다. ${\beta}$ 길항제(propra-nolol, $10^{-10}M$)도 역시 NE에 의해 유도된 $Na^+$ uptake를 유의성 있게 차단하였으나(propranolol+NE : $24{\pm}6%$ inhibition vs. NE ; p< 0.05), ${\beta}_1$(atenolol, $10^{-10}M$) 및 ${\beta}_2$ 길항제(butoxamine, $10^{-10}M$)는 부분적으로 차단하였다. 이러한 결과들은 NE에 의해 유도된 $Na^+$ uptake 증가작용은 ${\alpha}$(${\alpha}_1$${\alpha}_2$ )와 ${\beta}$(${\beta}_1$${\beta}_2$) 수용체 모두를 통하여 일어난다는 것을 시사해주고 있다. ANG II($10^{-11}M$) 또는 NE(${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ 작동제) 단독처리군의 $Na^+$ uptake는 대조군에 비해 유의성 있게 증가하였으나 (ANG II : $23{\pm}9%$ increase vs. Control; p < 0.05), 병합처리시 상승작용은 나타나지 않았다. ${\alpha}$ 또는 ${\beta}$ 길항제 처리시 NE 및 ANG II에 의해 유도되었던 $Na^+$ uptake 증가는 유의성 있게 차단되었다(phentolamine+NE+ANG II : $25{\pm}3%$ inhibition, propranolol+NE+ANG II : $24{\pm}6%$ inhibition vs. NE+ANG II, respectively ; p〈 0.05). 이 결과들은 $Na^+$ uptake에 있어서 ${\alpha}$(${\alpha}_1$${\alpha}_2$)와 ${\beta}$(${\beta}_1$${\beta}_2$) 수용체와 ANG II의 관련성을 시사해 준다. 결론적으로 토끼 신장 근위세뇨관세포에서 NE은 ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$${\beta}_2$ 수용체를 통하여 $Na^+$+ uptake를 증가시켰으며 이들 수용체는 ANG II $Na^+$ uptake 증가작용에 관여하였다.

  • PDF

Inhibition of Angiotensin II-Induced Vascular Smooth Muscle Cell Hypertrophy by Different Catechins

  • Zheng, Ying;Song, Hye-Jin;Yun, Seok-Hee;Chae, Yeon-Jeong;Jia, Hao;Kim, Chan-Hyung;Ha, Tae-Sun;Sachinidis, Agapios;Ahn, Hee-Yul;Davidge, Sandra T.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2005
  • A cumulative evidence indicates that consumption of tea catechin, flavan-3-ol derived from green tea leaves, lowers the risk of cardiovascular diseases. However, a precise mechanism for this cardiovascular action has not yet been fully understood. In the present study, we investigated the effects of different green tea catechins, such as epigallocatechin-3 gallate (EGCG), epigallocatechin (EGC), epicatechin-3 gallate (ECG), and epicatechin (EC), on angiotensin II (Ang II)-induced hypertrophy in primary cultured rat aortic vascular smooth muscle cell (VSMC). [$^3H$]-leucine incorporation was used to assess VSMC hypertrophy, protein kinase assay, and western blot analysis were used to assess mitogen-activated protein kinase (MAPK) activity, and RT-PCR was used to assess c-jun or c-fos transcription. Ang II increased [$^3H$]-leucine incorporation into VSMC. However, EGCG and ECG, but not EGC or EC, inhibited [$^3H$]-leucine incorporation increased by Ang II. Ang II increased phosphorylation of c-Jun, extracellular-signal regulated kinase (ERK) 1/2 and p38 MAPK in VSMC, however, EGCG and ECG , but not EGC or EC, attenuated c-Jun phosphorylation increased by Ang II. ERK 1/2 and p38 MAPK phosphorylation induced by Ang II were not affected by any catechins. Ang II increased c-jun and c-fos mRNA expression in VSMC, however, EGCG inhibited c-jun but not c-fos mRNA expression induced by Ang II. ECG, EGC and EC did not affect c-jun or c-fos mRNA expression induced by Ang II. Our findings indicate that the galloyl group in the position 3 of the catechin structure of EGCG or ECG is essential for inhibiting VSMC hypertrophy induced by Ang II via the specific inhibition of JNK signaling pathway, which may explain the beneficial effects of green tea catechin on the pathogenesis of cardiovascular diseases observed in several epidemiological studies.

Silencing MR-1 attenuates atherosclerosis in ApoE-/- mice induced by angiotensin II through FAK-Akt -mTOR-NF-kappaB signaling pathway

  • Chen, Yixi;Cao, Jianping;Zhao, Qihui;Luo, Haiyong;Wang, Yiguang;Dai, Wenjian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • Myofibrillogenesis regulator-1 (MR-1) is a novel protein involved in cellular proliferation, migration, inflammatory reaction and signal transduction. However, little information is available on the relationship between MR-1 expression and the progression of atherosclerosis. Here we report atheroprotective effects of silencing MR-1 in a model of Ang II-accelerated atherosclerosis, characterized by suppression focal adhesion kinase (FAK) and nuclear factor kappaB ($NF-{\kappa}B$) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the siRNA-MR-1 substantially attenuated Ang II-accelerated atherosclerosis with stabilization of atherosclerotic plaques and inhibited FAK, Akt, mammalian target of rapamycin (mTOR) and NF-kB activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in Ang II-treated vascular smooth muscle cells (VSMCs) and macrophages: siRNA-MR-1 inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of Ang II and highlight actions of silencing MR-1 to inhibit Ang II signaling, which is atheroprotective.

Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension

  • Kang, Kyu-Tae;Sullivan, Jennifer C.;Pollock, Jennifer S.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Many studies reported reduced antioxidant capacity in the vasculature under hypertensive conditions. However, little is known about the effects of antihypertensive treatments on the regulation of vascular antioxidant enzymes. Thus, we hypothesized that antihypertensive treatments prevent the reduction of antioxidant enzyme activity and expression in the small vessels of angiotensin II-induced hypertensive rats (ANG). We observed the small mesenteric arteries and small renal vessels of normotensive rats (NORM), ANG, and ANG treated with a triple antihypertensive therapy of reserpine, hydrochlorothiazide, and hydralazine (ANG + TTx). Systolic blood pressure was increased in ANG, which was attenuated by 2 weeks of triple therapy (127, 191, and 143 mmHg for NORM, ANG, and ANG + TTx, respectively; p < 0.05). Total superoxide dismutase (SOD) activity in the small mesenteric arteries of ANG was lower than that of NORM. The protein expression of SOD1 was lower in ANG than in NORM, whereas SOD2 and SOD3 expression was not different between the groups. Reduced SOD activity and SOD1 expression in ANG was not restored in ANG + TTx. Both SOD activity and SOD isoform expression in the small renal vessels of ANG were not different from those of NORM. Interestingly, SOD activity in the small renal vessels was reduced by TTx. Between groups, there was no difference in catalase activity or expression in both the small mesenteric arteries and small renal vessels. In conclusion, SOD activity in the small mesenteric arteries decreased by angiotensin II administration, but not by hypertension, which is caused by decreased SOD1 expression.