• Title/Summary/Keyword: Anchorage design

Search Result 213, Processing Time 0.027 seconds

Design and Implementation of Rebar Detailing DB and System in RC Buildgings (철근배근상세 DB 및 도면작성 시스템 설계와 구현)

  • Choi, Dong-In;Park, Eui-Dong;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.763-768
    • /
    • 2007
  • In construction of RC buildings, the quality of shop and detail drawings is very essential for the quality and safety of buildings, Nevertheless, most of thess works are left to site workers and the requirements about bar detailing such as anchorage and splice have been done without rational design and engineering. The purpose of this research is to develop a computer aided drawing system of rebars for RC buildings. The system is based on an integrated structural design system, that is SDP. SDP manages an engineering database for structural design information. It provides all the information needed to draw rebar drawings. The drawing system consists of three modules, 1) Structural Plan Drawing System, 2) Shop Drawing System, and 3) Detail Drawing System. It is expected that not only the productivity of detail drawing works but also the quality and safety of buildings will be improved using the rebar drawing system developed in this research.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Seo, Dong-Joo;Jung, Jae-Dong;Kim, Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

A Study on Verification Tests according to Connection Design Methods of Steel Plate Concrete Structures (강판 콘크리트 구조 접합부의 설계방식에 따른 검증실험 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Yang, Hyun Jung;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, out-of-plane flexural test was performed to analyze behavior properties for a beam specimen which imitated a structure with connection member between reinforced concrete and steel plate concrete part. Tie bars between a upper and a lower steel plate, and tie wide flange shapes between upper and lower ribs were designed to prevent the steel plate or the ribs from breakaway in the connection of the specimen. As a result of the test, ductile failure behavior of the specimen and the functionality of the tie members were conformed as originally intended. Also, tension tests were performed to evaluate the design appropriateness of two specimens produced to anchor and connect mechanically #14 bars. The two test results showed that the anchorage connection system behaves in elastic limit during the main bars yielded, and the integrity of the designed system was verified.

A Study on In-Situ Slope Reinforcement Methods Using Nailed Geotextiles (네일 및 지오텍스타일을 이용한 원위치 사면보강공법에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-152
    • /
    • 1994
  • In the present study, an economic design of Anchored Geosynthetic(AG) System applied mainly to reinforce unstable soil slopes is investigated. For this purpose methods of stability analysis are developed to determine the optimum installation angle, required minimum length and maximum spacing of nails. Anchorage of nails within the soil mass is achieved by frictional resistance to pull out along the effective length of the nails. Cases of infinite slope and finite slope are dealt with individually. Silce methods of stability analysis developed in the present study are limit-equilibrium-based. For the case of finite slope Spencer method which considers interslice force is modified to evalyate the overall stability. In addition, the effects of various design parameters on requried length and spacing of nails corresponding to the optimum orientation of nails are analyzed. Based on the analysis, a simplified equation is given for the optimum nail orientation. Also the importance of optimum nail orientation is illustrated throughout design example, and the appropriateness of judgment criterion are examined.

  • PDF

Design of Expansion Segment of Precast Prestressed Concrete Segmental Box Girder bridges Using Strut and Tie Model (스트럿 타이 모델을 이용한 프리캐스터 프리스트레스 콘크리트 세그멘탈 박스 거더 교량의 신축이음 세그멘트이 설계기법 연구)

  • 오병환;이형준;김익현;한승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.268-273
    • /
    • 1995
  • In recent years, precast prestressed concrete segmental box girder bridges have been increasingly constructed Expansion disphragm segment of this type bridge transfers forces from the superstructure onto bearing or column, and plays an important roll of anchorage zone for longitudinal prestressed forces. Non-linear stresses occur inside of diaphragms by these extensive concentrated forces. In this study, the strut-and-tie models are proposed to design an expansion segment rationally. A formula to determine the effective transverse prestressed forces is proposed on the basis of these models. The present study is expected to provide an effective tool to design expansion segment of prestressed concrete bridges rationally.

  • PDF

Computer-Aided Drawing and Manufacturing of Rebars for RC Buildings (RC 건축물 철근 배근 상세도 및 가공도 작성 자동화)

  • Choi Dong-In;Kim Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.508-513
    • /
    • 2006
  • In construction of RC buildings, the quality of shop and detail drawings is very essential for the quality and safety of buildings. Nevertheless, most of thess works are left to site workers and the requirements about bar detailing such as anchorage and splice have been done without rational design and engineering. The purpose of this research is to develop a computer-aided drawing system of rebars for RC buildings. The system is based on an integrated structural design system, that is SDP. SDP manages an engineering database for structural design information. It provides all the information needed to draw rebar drawings. The drawing system consists of three modules, 1) Structual Plan Drawing System, 2) Shop Drawing System, and 3) Detail Drawing System. It is expected that not only the productivity of detail drawing works but also the quality and safety of buildings will be improved using the rebar drawing system developed in this research.

  • PDF

Fracture behavior of Cast-in-place Headed Anchors to Concrete (콘크리트 CIP 앵커시스템의 파괴 거동에 관한 연구)

  • Park, Sung-Gyun;Kim, Ho-Seop;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.141-152
    • /
    • 2001
  • This paper presents the evaluation of behavior and the prediction of tensile capacity of anchors that can cause a failure of the concrete on the basis of the design for anchorage. Tests of cast-in-place headed anchors, domestically manufactured and installed in uncracked and unreinforced concrete member are conducted to test the effected of embedment length and edge distance. The failure modes and the load-deformation responses of the anchors are discussed and then the concrete failure data are compared with capacities by the two present methods : the 45 degree cone method of ACI 349, 318 and the concrete capacity design (COD) method. Differences between the results by test and by two prediction methods are analyzed Finite Element Method (FEM).

  • PDF

A Study on Design Methods and the Composition Elements in Flexure Structure Systems (휨 구조시스템의 구조디자인적 구성요소와 디자인 조합 수법 분석)

  • Lee, Juna
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.73-84
    • /
    • 2016
  • This study analyzes the four composition elements : profile, anchorage and connection, material and member rigidity, stability, as the main composition design elements of flexure structure systems, in order to explore possibilities for more various structure designs in architectures with flexure structure system. It also examines typical design methods that use the mentioned four composition elements. At the results, this research presents an understanding of the differences between funicular shape and non-funicular shape and mechanical features of the shapes in the profile element, regarding to the ratio of rise height to span length(f/l). Also, the typical design methods are presented for the designable usages of the hinge joints and the fix joints, and for the applications of member rigidity expressed by the index of the ratio of member depth to span length(d/l). And it was presented that connection styles, addition of brace members, placement of shear walls are the main design methods in the stability element. This data would be useful to architectural designs concerning integrated design with structures.

Strength Analysis of Joints in Floating Slab Track (플로팅 슬래브궤도 연결부의 강도 분석)

  • Kwon, Ku-Sung;Chung, Won-Seok;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.375-381
    • /
    • 2011
  • The passage of railway vehicles generates mechanical vibrations and noises. This problem can be mitigated by the 'floating slab track' that isolating from infrastructures by installing vibration isolator in the concrete slab track. In the previous researches, adjacent floating slab tracks are connected by dowel bar system. It has been reported that many dowel bars with less diameter show better load transfer efficiency (LTE) compared to small number of dowel bars with larger diameter under the condition of the same dowel area. In this study, dowel system is further considered as a concrete anchorage system and the design strength of the dowel system was evaluated based on ACI code 318-08 Appendix D. The design strength of dowel system is then verified against failure load test of floating slab system.

  • PDF