• Title/Summary/Keyword: Anchorage

Search Result 848, Processing Time 0.031 seconds

A Study on the Establishment of Design Criteria for Anchorage According to Port Characteristics

  • Park, Jun-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • This study suggests design criteria to evaluate the availability of anchorage in Korea to contribute to ship safety by presenting necessary design criteria for anchorage volume according to port development. Accordingly, the concept of "necessary volume of anchorage" is introduced to evaluate the volume of anchorage available in Korea's major ports, and classify these ports into three types according to the characteristics of incoming ship. Numerical simulations designed using MATLAB-SIMULINK have been carried out to track the irregularly of arrival and, waiting times along with the environmental conditions that affect anchorage and necessary volume of anchorage have been suggested based on these tests. Finally, in order to complete a function equation analysis, the necessary volume of anchorage with reference to cargo volume is addressed using regression analysis as follows. Group $A-Y_{NA}=0.0002X_{HA}-3.67$, Group $B-Y_{NB}=0.0002X_{HB}-6.82$, Group $C-Y_{NC}=0.0001X_{HC}+9.02$. This study contributes to a review of anchorage volume from the perspective of harbor development.

Design equation to evaluate bursting forces at the end zone of post-tensioned members

  • Kim, Joung Rae;Kwak, Hyo-Gyoung;Kim, Byung-Suk
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.423-436
    • /
    • 2019
  • Design equations to evaluate the bursting force in a post-tensioned anchorage zone have been introduced in many design codes, and one equation in AASHTO LRFD is widely used. However, this equation may not determine the bursting force exactly because it was designed on the basis of two-dimensional numerical analyses without considering various design parameters such as the duct hole and shape of the bearing plate. To improve the design equation, modification of the AASHTO LRFD design equation was considered. The behavior of the anchorage zone was investigated using three-dimensional linear elastic finite element analysis with design parameters such as bearing plate size and diameter of sheath hole. Upon the suggestion of a modified design equation for evaluating the bursting force in an anchorage block with a rectangular anchorage plate (Kim and Kwak 2018), additional influences of design parameters that could affect the evaluation of bursting force were investigated. An improved equation was introduced for determining the bursting force in an anchorage block with a circular anchorage plate, using the same procedure introduced in the design equation for an anchorage block with a rectangular anchorage plate. The validity of the introduced design equation was confirmed by comparison with AASHTO LRFD.

Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.761-777
    • /
    • 2021
  • This study presents a numerical investigation on the sensitivity of electromechanical (EM) impedance responses to inner damaged concrete of a prestressed anchorage zone. Firstly, the Ottosen yield criterion is selected to simulate the plasticity behavior of the concrete anchorage zone under the compressive loading. Secondly, several overloading cases are selected to analyze inner damage formations in the concrete of the anchorage zone. Using a finite element (FE) model of the anchorage zone, the relationship between applied forces and stresses is analyzed to illustrate inner plasticity regions in concrete induced by the overloading. Thirdly, EM impedance responses of surface-mounted PZT (lead-zirconate-titanate) sensors are numerically acquired before and after concrete damage occurrence in the anchorage zone. The variation of impedance responses is estimated using the RMSD (root-mean-square-deviation) damage metric to quantify the sensitivity of the signals to inner damaged concrete. Lastly, a novel PZT skin, which can measure impedance signatures in predetermined frequency ranges, is designed for the anchorage zone to sensitively monitor the EM impedance signals of the inner damaged concrete. The feasibility of the proposed method is numerically evaluated for a series of damage cases of the anchorage zone. The results reveal that the proposed impedance-based method is promising for monitoring inner damaged concrete in anchorage zones.

Minimization of Bursting Force at Anchorage Zone Using Prestressing Order for PSC Box Girder Bridge (PSC 박스거더교 정착부의 최소파열력에 대한 강선긴장순서)

  • Chung, Jee-Seung;Koo, Hyoung-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.103-109
    • /
    • 2001
  • In this paper, the prestressing order of tendons is studied to minimize a bursting force of an anchorage. The bursting forces is a primary factor of anchorage failures. The forces of the anchorage depend on the prestressing order and size of the tendons, if a lot of tendons are introduced to the anchorage. Many studies have been made to analyze the bursting force of the anchorage. However, the studies have been limited to the bursting forces of the anchorage having one or two tendons. PSC box girder bridges usually have a lot of tendons. And the difference of the bursting forces lies in the prestressing order of the tendons. As a result of the lack of studies on the prestressing order for the bridges, the order depends on the designer's intuition and experiences. It may be stated that this study should be useful for determining the reasonable prestressing order of tendons for the PSC box girder bridges.

  • PDF

Behavior of Mechanical Anchorage of Bars Embedded in Concrete Blocks

  • You, Young-Chan;Park, Keun-Do;Kim, Keung-Hwan;Lee, Li-Hyung
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.86-91
    • /
    • 2002
  • This paper presents an experimental study to investigate the behavior of mechanical anchorage of reinforcing bars in concrete members. Three kinds of mechanical anchorage which are a kind of headed reinforcements are considered in this study. Total seven specimens were prepared to consider the effects of anchoring methods (Type A, Type B and Type C) and anchorage lengths of the reinforcing bars (14 $d_{b}$, 12 $d_{b}$, 9 $d_{b}$). Pullout tests conforming to ASTM were carried out to assess the effects of several variables on anchoring strength of bars. Based on the test results, it was concluded that the behavior of the specimen anchored by the mechanical anchorage with the anchor-age length of 12 $d_{b}$, is as good as, or better than that of the specimen anchored by 90-degree standard hook.rd hook.

  • PDF

Anchorage Zone Reinforcement for Unbonded Post-Tensioned Circular Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구를 적용한 포스트텐션 정착 구역의 보강)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2018
  • In the post-tensioned concrete member, additional reinforcement is required to prevent failure in the anchorage zone. In this study, the details of reinforcement suitable for the anchorage zone of the post-tensioned concrete member using circular anchorage was proposed based on the experimental results. The tests were conducted with the compressive strength of concrete and reinforcement types as variables. The experimental results indicated that the additional reinforcement for the anchorage zone is required when the compressive strength of concrete is less than 17.5 MPa. U-shaped reinforcement shows most effective performance in terms of maximum strength and cracks patterns.

Indirect palatal skeletal anchorage (PSA) for treatment of skeletal Class I bialveolar protrusion (Indirect palatal skeletal anchorage (PSA)를 이용한 골격성 I급 양악 치성 전돌 환자의 치험례)

  • Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.458-464
    • /
    • 2004
  • Anchorage plays an important role in orthodontic treatment especially in the maxillary arch. In spite of many efforts for anchorage control. it was difficult for clinicians to predict the result of treatment because most of the treatment necessitated an absolute compliance of patients, But recently, skeletal anchorage has been used widely because it does not necessitate patient compliance but produces absolute anchorage. In addition titanium miniscrews have several advantages such as ease of insertion and removal. possible immediate leading and use in limited implantation spaces. In this case, a skeletal Class I bialveolar protrusion Patient was treated with standard edgewise mechanics using indirect active P.S.A. (palatal skeletal anchorage). The miniscrews in the paramedian area of the hard palate provided anchorage for retraction of the upper anterior teeth and remained firm and stable throughout treatment This indicates that the PSA can be used to reinforce anchorage for orthodontic treatment in the maxillary arch Consequently, this new approach can help effective tooth movement without patient compliance, when used with various transpalatal arch systems.

Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing

  • Seo, Seunghwan;Lim, Hyungsung;Chung, Moonkyung
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.457-470
    • /
    • 2021
  • In this study, the pull-out behavior of a tunnel-type anchorage for suspension bridges was investigated using experimental tests and image processing analyses. The study focused on evaluating the initial failure behavior and failure mode of the tunnel-type anchorage. In order to evaluate the failure mode of tunnel-type anchorage, a series of scaled model tests were conducted based on the prototype anchorage of the Ulsan Grand Bridge. In the model tests, the anchorage body and surrounding rocks were fabricated using a gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests demonstrate that the tunnel-type anchorage underwent a wedge-shaped failure. In addition, the failure mode changed according to the differences in the physical properties of the surrounding rock and the anchorage body and the size of the anchor plate. The size of the anchor plate was found to be an important parameter that determines the failure mode. However, the difference in physical properties between the surrounding rock and the anchorage body did not affect its size. In addition, this study analyzed the initial failure behavior of the tunnel-type anchorage through image analysis and confirmed that the failure was sequentially transferred from the inside of the tunnel to the surrounding rock according to the image analysis. The reasonable failure mode for the design of the tunnel-type anchorage should be wedge-type rather than pull-out type.

An Analysis and Design on the Anchorage of PSC Box Girder (PSC Box Girder 정착부의 해석 및 설계)

  • Im, Jung-Soun;Bahang, Yun-Suk;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.103-114
    • /
    • 2001
  • As the results of comparison with several anchorage design methods of PSC box girder, stress superposition effect by the order of prestressing force can't be considered in the case of multi-anchorage design with existing design methods. In anchorage design by 3-D finite element analysis, estimation of stress concentration region and stress flow are correctly defined, but the estimation of sectional forces in anchorage is very complicated. In the case of anchorage design by strut-tie model method, the stress superposition effect can be considered and sectional forces in anchorage are easily calculated. Therefore, strut-tie model method is remarkably suitable to anchorage design if geometrical conditions of the truss members are carefully considered.

  • PDF

A Study on the Comparison of the Capacity of Waiting Anchorage Design according to the Port Operation Method - Focusing on Busan New Port -

  • Park, Jun-mo;Yang, Hyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • This study was conducted to propose an effective port operation method in terms of the design capacity of waiting anchorage by comparing the ratio and the number of waiting anchorage according to the port operation method of Busan New Port. For this, the Arena simulation program compared the rates of waiting vessels according to the application of the multi-user terminal, liner terminal and hybrid liner terminal operation methods. As a result, analysis suggested the necessary anchorage space can be reduced to about 18 % when using the multi-user terminal operation method and about 15.6 % when using the hybrid liner terminal operation method, as compared with the liner terminal operation method. Specifically, it was effective to apply the multi-user terminal operation method in terms of the anchorage capacity to be designated to Busan New Port. This study can apply to the designation of the new anchorage in the Busan New Port by reflecting the contents of the design of the anchorage in accordance with the port operation method.